
Bilateral Fixed-Points and Algebraic Properties of Viability Kernels and Capture Basins of Sets
Aubin, Jean-Pierre; Catté, Francine (2002), Bilateral Fixed-Points and Algebraic Properties of Viability Kernels and Capture Basins of Sets, Set-Valued Analysis, 10, 4, p. 379-416. http://dx.doi.org/10.1023/A:1020667819804
Type
Article accepté pour publication ou publiéDate
2002Journal name
Set-Valued AnalysisVolume
10Number
4Publisher
Springer
Pages
379-416
Publication identifier
Metadata
Show full item recordAbstract (EN)
Many concepts of viability theory such as viability or invariance kernels and capture or absorption basins under discrete multivalued systems, differential inclusions and dynamical games share algebraic properties that provide simple – yet powerful – characterizations as either largest or smallest fixed points or unique minimax (or bilateral fixed-point) of adequate maps defined on pairs of subsets. Further, important algorithms such as the Saint-Pierre viability kernel algorithm for computing viability kernels under discrete system and the Cardaliaguet algorithm for characterizing lsquodiscriminating kernelsrsquo under dynamical games are algebraic in nature. The Matheron Theorem as well as the Galois transform find applications in the field of control and dynamical games allowing us to clarify concepts and simplify proofs.Subjects / Keywords
viability kernel; capture basin; discriminating kernel; Matheron Theorem; Saint-Pierre viability kernel algorithm; Cardaliaguet discriminating kernel algorithm; openings; closings; Galois transformRelated items
Showing items related by title and author.
-
Saint-Pierre, Patrick (2002) Communication / Conférence
-
Aubin, Jean-Pierre; Sigmund, Karl (1988) Article accepté pour publication ou publié
-
Aubin, Jean-Pierre (1990) Article accepté pour publication ou publié
-
Aubin, Jean-Pierre (1980) Article accepté pour publication ou publié
-
Catté, Francine; Lions, Pierre-Louis; Morel, Jean-Michel; Coll, Tomeu (1992) Article accepté pour publication ou publié