• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Bilateral Fixed-Points and Algebraic Properties of Viability Kernels and Capture Basins of Sets

Thumbnail
View/Open
2002-10.ps (384.1Kb)
bilateral_aubin.PDF (276.9Kb)
Date
2002
Dewey
Probabilités et mathématiques appliquées
Sujet
viability kernel; capture basin; discriminating kernel; Matheron Theorem; Saint-Pierre viability kernel algorithm; Cardaliaguet discriminating kernel algorithm; openings; closings; Galois transform
Journal issue
Set-Valued Analysis
Volume
10
Number
4
Publication date
2002
Article pages
379-416
Publisher
Springer
DOI
http://dx.doi.org/10.1023/A:1020667819804
URI
https://basepub.dauphine.fr/handle/123456789/6365
Collections
  • CEREMADE : Publications
Metadata
Show full item record
Author
Aubin, Jean-Pierre
Catté, Francine
Type
Article accepté pour publication ou publié
Abstract (EN)
Many concepts of viability theory such as viability or invariance kernels and capture or absorption basins under discrete multivalued systems, differential inclusions and dynamical games share algebraic properties that provide simple – yet powerful – characterizations as either largest or smallest fixed points or unique minimax (or bilateral fixed-point) of adequate maps defined on pairs of subsets. Further, important algorithms such as the Saint-Pierre viability kernel algorithm for computing viability kernels under discrete system and the Cardaliaguet algorithm for characterizing lsquodiscriminating kernelsrsquo under dynamical games are algebraic in nature. The Matheron Theorem as well as the Galois transform find applications in the field of control and dynamical games allowing us to clarify concepts and simplify proofs.

Related items

Showing items related by title, author, creator and subject.

  • Asymptotic behaviour for small mass in the two-dimensional parabolic-elliptic Keller-Segel model 

    Fernandez, Javier; Escobedo, Miguel; Dolbeault, Jean; Blanchet, Adrien (2010) Article accepté pour publication ou publié
  • Rate of convergence to self-similarity for Smoluchowski's coagulation equation with constant coefficients 

    Cañizo, José Alfredo; Mischler, Stéphane; Mouhot, Clément (2010) Article accepté pour publication ou publié
  • Rates of convergence for the posterior distributions of mixtures of betas and adaptive nonparamatric estimation of the density 

    Rousseau, Judith (2009) Communication / Conférence

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.