• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Integral equation solutions as prior distributions for Bayesian model selection

Cano, Juan Antonio; Salmeron, Diego; Robert, Christian P. (2008), Integral equation solutions as prior distributions for Bayesian model selection, Test, 17, 3, p. 493-504. http://dx.doi.org/10.1007/s11749-006-0040-8

View/Open
2005-41.pdf (165.0Kb)
Type
Article accepté pour publication ou publié
Date
2008
Journal name
Test
Volume
17
Number
3
Publisher
Springer
Pages
493-504
Publication identifier
http://dx.doi.org/10.1007/s11749-006-0040-8
Metadata
Show full item record
Author(s)
Cano, Juan Antonio

Salmeron, Diego

Robert, Christian P.
Abstract (EN)
In many statistical problems we deal with more than one model. When the prior information on the parameters of the models is vague default priors are typically used. Unfortunately, these priors are usually improper provoking a calibration problem which precludes the comparison of the models. An attempt for solving this difficulty consists in using intrinsic priors, introduced in Berger and Pericchi (1996, The intrinsic Bayes factor for model selection and prediction. J Am Stat Assoc 91:109–122), instead of the original default priors; however, there are situations where the class of intrinsic priors is too large. Because of this we propose prior distributions for model selection that are solutions of a system of integral equations which is derived to calibrate the initial default priors. Under some assumptions our integral equations yield a unique solution. Some illustrative examples are provided.
Subjects / Keywords
Bayes factor; Model selection; Integral equations; Intrinsic priors; Expected posterior priors

Related items

Showing items related by title and author.

  • Thumbnail
    Objective Bayesian hypothesis testing in binomial regression models with integral prior distributions 
    Salmeron, Diego; Cano, Juan Antonio; Robert, Christian P. (2015) Article accepté pour publication ou publié
  • Thumbnail
    Computational Solutions for Bayesian Inference in Mixture Models 
    Robert, Christian P.; Celeux, Gilles; Kamary, Kaniav; Malsiner-Walli, Gertraud; Marin, Jean-Michel (2019) Chapitre d'ouvrage
  • Thumbnail
    Bayesian Model Selection and Statistical Modeling by Tomohiro Ando: A review 
    Robert, Christian P. (2011) Article accepté pour publication ou publié
  • Thumbnail
    Jeffreys Priors for Mixture Models 
    Robert, Christian P.; Grazian, Clara (2014) Communication / Conférence
  • Thumbnail
    Model Selection for Mixture Models-Perspectives and Strategies 
    Celeux, Gilles; Frühwirth-Schnatter, Sylvia; Robert, Christian P. (2018) Chapitre d'ouvrage
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo