• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

On the Eigenvalues of Operators with Gaps. Application to Dirac Operators

Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2000), On the Eigenvalues of Operators with Gaps. Application to Dirac Operators, Journal of Functional Analysis, 174, 1, p. 208-226. http://dx.doi.org/10.1006/jfan.1999.3542

View/Open
dirac_operators.PDF (207.1Kb)
Type
Article accepté pour publication ou publié
Date
2000
Journal name
Journal of Functional Analysis
Volume
174
Number
1
Publisher
Elsevier
Pages
208-226
Publication identifier
http://dx.doi.org/10.1006/jfan.1999.3542
Metadata
Show full item record
Author(s)
Dolbeault, Jean cc
Esteban, Maria J. cc
Séré, Eric
Abstract (EN)
This paper is devoted to a general min-max characterization of the eigenvalues in a gap of the essential spectrum of a self-adjoint unbounded operator. We prove an abstract theorem, then we apply it to the case of Dirac operators with a Coulomb-like potential. The result is optimal for the Coulomb potential.
Subjects / Keywords
variational methods; self-adjoint operators; quadratic forms; spectral gaps; eigenvalues; min-max; Rayleigh–Ritz quotients; Dirac operators; Hardy's inequality

Related items

Showing items related by title and author.

  • Thumbnail
    General results on the eigenvalues of operators with gaps, arising from both ends of the gaps. Application to Dirac operators. 
    Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2006) Article accepté pour publication ou publié
  • Thumbnail
    Corrigendum to: “On the eigenvalues of operators with gaps. Application to Dirac operators” [J. Funct. Anal. 174 (1) (2000) 208–226] 
    Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2023) Article accepté pour publication ou publié
  • Thumbnail
    Distinguished self-adjoint extension and eigenvalues of operators with gaps. Application to Dirac-Coulomb operators 
    Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2022) Document de travail / Working paper
  • Thumbnail
    Variational Methods in Relativistic Quantum Mechanics: New Approach to the Computation of Dirac Eigenvalues 
    Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2000) Communication / Conférence
  • Thumbnail
    Variational characterization for eigenvalues of Dirac operators 
    Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2000) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo