Show simple item record

dc.contributor.authorKhalid, Daoudi
dc.contributor.authorLévy Véhel, Jacques
dc.contributor.authorYves, Meyer
dc.date.accessioned2011-05-27T14:39:46Z
dc.date.available2011-05-27T14:39:46Z
dc.date.issued1998
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/6339
dc.language.isoenen
dc.subjectcontinuous functionsen
dc.subject.ddc519en
dc.titleConstruction of continuous functions with prescribed local regularityen
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherMassachusetts Institute of technology [Cambridge] (MIT);États-Unis
dc.contributor.editoruniversityotherFRACTALES (INRIA Rocquencourt);France
dc.description.abstractenIn this work we investigate both from a theoretical and a practical point of view the following problem: Let s be a function from [0;1] to [0;1]. Under which conditions does there exist a continuous function f from [0;1] to IR such that the regularity of f at x, measured in terms of Hölder exponent, is exactly s(x), for all x [0;1]? We obtain a necessary and sufficient condition on s and give three constructions of the associated function f. We also examine some extensions, as for instance conditions on the box or Tricot dimension or the multifractal spectrum of these functions. Finally we present a result on the "size" of the set of functions with prescribed local regularity.en
dc.relation.isversionofjnlnameConstructive Approximation
dc.relation.isversionofjnlvol14en
dc.relation.isversionofjnlissue3en
dc.relation.isversionofjnldate1998
dc.relation.isversionofjnlpages349-385en
dc.relation.isversionofdoihttp://dx.doi.org/10.1007/s003659900078en
dc.identifier.urlsitehttp://hal.inria.fr/inria-00593268/fr/en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherSpringeren
dc.subject.ddclabelProbabilités et mathématiques appliquéesen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record