Show simple item record

dc.contributor.authorSavaré, Giuseppe
dc.contributor.authorNazaret, Bruno
HAL ID: 7130
dc.contributor.authorDolbeault, Jean
HAL ID: 87
ORCID: 0000-0003-4234-2298
dc.date.accessioned2011-05-27T14:12:50Z
dc.date.available2011-05-27T14:12:50Z
dc.date.issued2012
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/6336
dc.language.isoenen
dc.subjectKolmogorov-Fokker-Planck equationen
dc.subjectGradient flowsen
dc.subjectAction functionalen
dc.subjectContinuity equationen
dc.subjectGeneralized Poincaré inequalityen
dc.subjectKantorovich-Rubinstein-Wasserstein distanceen
dc.subjectOptimal transporten
dc.subject.ddc511en
dc.titleFrom Poincaré to logarithmic Sobolev inequalities: a gradient flow approachen
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherDipartimento di Matematica "F. Casorati";Italie
dc.description.abstractenWe use the distances introduced in a previous joint paper to exhibit the gradient flow structure of some drift-diffusion equations for a wide class of entropy functionals. Functional inequalities obtained by the comparison of the entropy with the entropy production functional reflect the contraction properties of the flow. Our approach provides a unified framework for the study of the Kolmogorov-Fokker-Planck (KFP) equation.en
dc.relation.isversionofjnlnameSIAM Journal on Mathematical Analysis
dc.relation.isversionofjnlvol44
dc.relation.isversionofjnlissue5
dc.relation.isversionofjnldate2012
dc.relation.isversionofjnlpages3186-3216
dc.relation.isversionofdoihttp://dx.doi.org/10.1137/110835190
dc.identifier.urlsitehttp://hal.archives-ouvertes.fr/hal-00595042/fr/en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherSIAM
dc.subject.ddclabelAnalyseen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record