Afficher la notice abrégée

dc.contributor.authorDolbeault, Jean
dc.date.accessioned2011-05-13T12:45:21Z
dc.date.available2011-05-13T12:45:21Z
dc.date.issued1999
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/6279
dc.language.isoenen
dc.subjectVlasov-Fokker-Planck equationen
dc.subjectBGK equationen
dc.subjectLandau equationen
dc.subjectBoltzmann equationen
dc.subjectentropyen
dc.subjectLyapunov functionalen
dc.subjectdispersionen
dc.subjecttime-dependent rescalingen
dc.subject.ddc515en
dc.titleTime-Dependent Rescalings and Dispersion for the Boltzmann Equationen
dc.typeDocument de travail / Working paper
dc.description.abstractenUsing the notion of time-dependent rescalings introduced in [DR], we prove explicit dispersion results. The main tool is a Lyapunov functional which is given by the energy after rescaling and the entropy dissipation. The relation with asymptotically self-similar solutions is investigated. The method applies to the solutions of the Boltzmann, Landau and BGK equations. In the case of the Vlasov-Fokker-Planck equation, the difference with the self-similar solutions has a faster decay, which is estimated by a classical method for parabolic equations and interpolation estimates.en
dc.publisher.nameUniversité Paris-Dauphineen
dc.publisher.cityParisen
dc.identifier.citationpages25en
dc.description.sponsorshipprivateouien
dc.subject.ddclabelAnalyseen


Fichiers attachés à cette notice

Thumbnail

Ce document fait partie de la (des) collection(s) suivante(s)

Afficher la notice abrégée