
Empirical Distributions of Beliefs Under Imperfect Observation
Tomala, Tristan; Gossner, Olivier (2006), Empirical Distributions of Beliefs Under Imperfect Observation, Mathematics of Operations Research, 31, 1, p. 13-30. http://dx.doi.org/10.1287/moor.1050.0174
View/ Open
Type
Article accepté pour publication ou publiéDate
2006Journal name
Mathematics of Operations ResearchVolume
31Number
1Publisher
Informs
Pages
13-30
Publication identifier
Metadata
Show full item recordAbstract (EN)
Let (xn)n be a process with values in a finite set X and law P, and let yn = f(xn) be a function of the process. At stage n, the conditional distribution pn = P(xn | x1,...,xn–1), element of {Pi} = {Delta}(X), is the belief that a perfect observer, who observes the process online, holds on its realization at stage n. A statistician observing the signals y1,...,yn holds a belief en = P(pn | x1,...,xn) isin {Delta}({Pi}) on the possible predictions of the perfect observer. Given X and f, we characterize the set of limits of expected empirical distributions of the process (en) when P ranges over all possible laws of (xn)n.Subjects / Keywords
Stochastic process; signals; entropy; repeated gamesRelated items
Showing items related by title and author.
-
Gossner, Olivier; Tomala, Tristan (2007) Article accepté pour publication ou publié
-
Gossner, Olivier; Tomala, Tristan (2003) Document de travail / Working paper
-
Gossner, Olivier; Tomala, Tristan (2008) Article accepté pour publication ou publié
-
Tomala, Tristan; Laraki, Rida; Gossner, Olivier (2009) Article accepté pour publication ou publié
-
Gossner, Olivier; Laraki, Rida; Tomala, Tristan (2004-11) Document de travail / Working paper