Show simple item record

dc.contributor.authorLachand-Robert, Thomas
dc.contributor.authorCarlier, Guillaume
dc.date.accessioned2011-05-11T12:52:03Z
dc.date.available2011-05-11T12:52:03Z
dc.date.issued2001
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/6254
dc.language.isoenen
dc.subjectConvexity constrainten
dc.subjectCalcul variationnelen
dc.subjectVariational calculusen
dc.subjectFonctions convexesen
dc.subject.ddc519en
dc.titleRegularity of solutions for some variational problems subject to a convexity constrainten
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherUniversite Pierre et Marie Curie;France
dc.description.abstractenWe first study the minimizers, in the class of convex functions, of an elliptic functional with nonhomogeneous Dirichlet boundary conditions. We prove C1 regularity of the minimizers under the assumption that the upper envelope of admissible functions is C1. This condition is optimal at least when the functional depends only on the gradient [3]. We then give various extensions of this result. In Particular, we consider a problem without boundary conditions arising in an economic model introduced by Rochet and Choné in [4].en
dc.relation.isversionofjnlnameCommunications on Pure and Applied Mathematics
dc.relation.isversionofjnlvol54en
dc.relation.isversionofjnlissue5en
dc.relation.isversionofjnldate2001-05
dc.relation.isversionofjnlpages583-594en
dc.relation.isversionofdoihttp://dx.doi.org/10.1002/cpa.3en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherJohn Wiley & Sons, Inc.en
dc.subject.ddclabelProbabilités et mathématiques appliquéesen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record