
Fourier's law for a microscopic model of heat conduction
Olla, Stefano; Bernardin, Cédric (2005), Fourier's law for a microscopic model of heat conduction, Journal of Statistical Physics, 121, 3-4, p. 271-289. http://dx.doi.org/10.1007/s10955-005-7578-9
View/ Open
Type
Article accepté pour publication ou publiéDate
2005Journal name
Journal of Statistical PhysicsVolume
121Number
3-4Publisher
Springer
Pages
271-289
Publication identifier
Metadata
Show full item recordAuthor(s)
Olla, Stefano
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Bernardin, Cédric
Abstract (EN)
We consider a chain of N harmonic oscillators perturbed by a conservative stochastic dynamics and coupled at the boundaries to two gaussian thermostats at different temperatures. The stochastic perturbation is given by a diffusion process that exchange momentum between nearest neighbor oscillators conserving the total kinetic energy. The resulting total dynamics is a degenerate hypoelliptic diffusion with a smooth stationary state. We prove that the stationary state, in the limit as N→ ∞, satisfies Fourier’s law and the linear profile for the energy average.Subjects / Keywords
non-equilibrium stationary; entropy production; heat conduction; Fourier’s lawRelated items
Showing items related by title and author.
-
Komorowski, Tomasz; Olla, Stefano; Simon, Marielle (2020) Article accepté pour publication ou publié
-
Olla, Stefano; Bernardin, Cédric; Basile, Giada (2009) Article accepté pour publication ou publié
-
Komorowski, Tomasz; Lebowitz, Joel L.; Olla, Stefano; Simon, Marielle (2022) Document de travail / Working paper
-
Olla, Stefano (2019) Article accepté pour publication ou publié
-
Letizia, Viviana (2017-12-19) Thèse