• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Large Time Asymptotic of Nonlinear Drift-Diffusion Systems with Poisson Coupling

Biler, Piotr; Dolbeault, Jean; Markowich, Peter (2001), Large Time Asymptotic of Nonlinear Drift-Diffusion Systems with Poisson Coupling, Transport Theory and Statistical Physics, 30, 4-6, p. 521-536. http://dx.doi.org/10.1081/TT-100105936

View/Open
poisson_coupling.PDF (143.3Kb)
Type
Article accepté pour publication ou publié
Date
2001
Journal name
Transport Theory and Statistical Physics
Volume
30
Number
4-6
Publisher
Taylor & Francis
Pages
521-536
Publication identifier
http://dx.doi.org/10.1081/TT-100105936
Metadata
Show full item record
Author(s)
Biler, Piotr
Dolbeault, Jean cc
Markowich, Peter
Abstract (EN)
We study the asymptotic behavior as t→ +∞ of a system of densities of charged particles satisfying nonlinear drift-diffusion equations coupled by a damped Poisson equation for the drift-potential. In plasma physics applications the damping is caused by a spatio-temporal rescaling of an “unconfined” problem, which introduces a harmonic external potential of confinement. We present formal calculations (valid for smooth solutions) which extend the results known in the linear diffusion case to nonlinear diffusion of e.g. Fermi-Dirac or fast diffusion/porous media type.
Subjects / Keywords
Nonlinear drift-diffusion systems; Asymptotic behavior of solutions; Logarithmic sobolev inequalities; Fast diffusion; Porous media

Related items

Showing items related by title and author.

  • Thumbnail
    Long Time Behavior of Solutions to Nernst-Planck and Debye-Hückel Drift-Diffusion Systems 
    Biler, Piotr; Dolbeault, Jean (2000) Article accepté pour publication ou publié
  • Thumbnail
    A qualitative study of linear drift-diffusion equations with time-dependent or degenerate coefficients 
    Kowalczyk, Michal; Illner, Reinhard; Dolbeault, Jean; Bartier, Jean-Philippe (2007) Article accepté pour publication ou publié
  • Thumbnail
    Stationary solutions, intermediate asymptotics and large-time behaviour of type II Streater's models 
    Karch, Grzegorz; Biler, Piotr; Dolbeault, Jean; Esteban, Maria J. (2001) Article accepté pour publication ou publié
  • Thumbnail
    Steady states for Streater’s energy-transport models of self-gravitating particles 
    Nadzieja, Tadeusz; Markowich, Peter; Dolbeault, Jean; Biler, Piotr; Esteban, Maria J. (2004) Chapitre d'ouvrage
  • Thumbnail
    Nonlinear diffusions as limit of kinetic equations with relaxation collision kernels 
    Dolbeault, Jean; Markowich, Peter; Oelz, Dietmar; Schmeiser, Christian (2007) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo