• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Arbitrage, duality and asset equilibria

Dana, Rose-Anne; Le Van, Cuong (2000), Arbitrage, duality and asset equilibria, Journal of Mathematical Economics, 34, 3, p. 397-413. http://dx.doi.org/10.1016/S0304-4068(00)00049-5

Type
Article accepté pour publication ou publié
Date
2000
Journal name
Journal of Mathematical Economics
Volume
34
Number
3
Publisher
Elsevier
Pages
397-413
Publication identifier
http://dx.doi.org/10.1016/S0304-4068(00)00049-5
Metadata
Show full item record
Author(s)
Dana, Rose-Anne
Le Van, Cuong
Abstract (EN)
In finite dimensional economies, it was proven by Werner [Werner, J., 1987. Arbitrage and the existence of competitive equilibrium. Econometrica 55, 1403–1418.], that if there exists a no-arbitrage price (equivalently, under standard assumptions on agents' utilities, if aggregate demand exists for some price), then there exists an equilibrium. This result does not generalize to the infinite dimension. The purpose of this paper is to propose a “utility weight” interpretation of the notion of “of no-arbitrage price”. We define “fair utility weight vectors” as utility weight vectors for which the representative agent problem has a unique solution. They correspond to no-arbitrage prices. The assumption that there exists a Pareto-optimum, can be viewed as the equivalent of the assumption of existence of aggregate demand. We may then define in the space of utility weight vector, the excess utility correspondence, which has the properties of an excess demand correspondence. We use a generalized version of Gale–Nikaido–Debreu's lemma to prove the existence of an equilibrium.
Subjects / Keywords
Arbitrage; Duality; Asset
JEL
G12 - Asset Pricing; Trading Volume; Bond Interest Rates

Related items

Showing items related by title and author.

  • Thumbnail
    No-arbitrage, overlapping sets of priors and the existence of efficient allocations and equilibria in the presence of risk and ambiguity 
    Dana, Rose-Anne; Le Van, Cuong (2008) Document de travail / Working paper
  • Thumbnail
    Overlapping Sets of Priors and the Existence of Efficient Allocations and Equilibria for Risk Measures 
    Dana, Rose-Anne; Le Van, Cuong (2010) Article accepté pour publication ou publié
  • Thumbnail
    Overlapping Risk Adjusted Sets of Priors and the Existence of Efficient Allocations and Equilibria with Short-Selling 
    Le Van, Cuong; Dana, Rose-Anne (2010) Article accepté pour publication ou publié
  • Thumbnail
    Efficient allocations and equilibria with short-selling and incomplete preferences 
    Le Van, Cuong; Dana, Rose-Anne (2014) Article accepté pour publication ou publié
  • Thumbnail
    On the Different Notions of Arbitrage and Existence of Equilibrium 
    Dana, Rose-Anne; Le Van, Cuong; Magnien, François (1999) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo