Show simple item record

dc.contributor.authorAubin, Jean-Pierre
dc.contributor.authorFrankowska, Halina
dc.date.accessioned2011-05-06T08:44:16Z
dc.date.available2011-05-06T08:44:16Z
dc.date.issued1997
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/6198
dc.description.abstractfrOn démontre l'existence de solutions multivoques globales du problème de Cauchy pour les systèmes hyperboliques du premier ordre d'équations ou d'inclusions aux dérivées partielles, pour des conditions initiales univoques ou multivoques. La méthode est basée sur l'équivalence entre ce problème et celui de l'existence de tubes de viabilité pour le système caractéristique d'équations différentielles ordinaires ou d'inclusions différentielles.en
dc.language.isoenen
dc.subjectinclusionsen
dc.subjectpartial differential equationsen
dc.subjectCauchy problemen
dc.subject.ddc515en
dc.titleSet-valued solutions to the Cauchy problem for hyperbolic systems of partial differential inclusionsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe prove the existence of global set-valued solutions to the Cauchy problem for partial differential equations and inclusions, with either single-valued or set-valued initial conditions. The method is based on the equivalence between this problem and problem of finding viability tubes of the associated characteristic system of ordinary differential equations. As an application we construct the value function of the Mayer problem arising in control theory.en
dc.relation.isversionofjnlnameNoDEA: Nonlinear Differential Equations and Applications
dc.relation.isversionofjnlvol4en
dc.relation.isversionofjnlissue2en
dc.relation.isversionofjnldate1997
dc.relation.isversionofjnlpages149-168en
dc.relation.isversionofdoihttp://dx.doi.org/10.1007/PL00001413en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherSpringeren
dc.subject.ddclabelAnalyseen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record