
Multiple bubbling for the exponential nonlinearity in the slightly supercritical case
Del Pino, Manuel; Dolbeault, Jean; Musso, Monica (2006), Multiple bubbling for the exponential nonlinearity in the slightly supercritical case, Communications on Pure and Applied Analysis, 5, 3, p. 463-482. http://dx.doi.org/10.3934/cpaa.2006.5.463
Type
Article accepté pour publication ou publiéDate
2006Journal name
Communications on Pure and Applied AnalysisVolume
5Number
3Publisher
American Institute of Mathematical Sciences
Pages
463-482
Publication identifier
Metadata
Show full item recordAbstract (EN)
We consider radial solutions of an equation involving a p-Laplacian type operator and an exponential nonlinearity in dimension n, which turns out to be critical for p = n. For such a nonlinearity, the equation can be reduced to an autonomous ODE, thus allowing a very precise study of the multi-bubbling phenomenon as the solutions in the critical case are approached by solutions corresponding to the supercritical case pSubjects / Keywords
Gelfand's problem; bifurcation branches; p-Laplacian; bubble-towers; phase-plane analysisRelated items
Showing items related by title and author.
-
A Phase Plane Analysis of the “Multi-Bubbling” Phenomenon in Some Slightly Supercritical Equations Del Pino, Manuel; Dolbeault, Jean; Musso, Monica (2004) Article accepté pour publication ou publié
-
Del Pino, Manuel; Dolbeault, Jean; Musso, Monica (2004) Communication / Conférence
-
Del Pino, Manuel; Dolbeault, Jean; Musso, Monica (2003) Article accepté pour publication ou publié
-
Davila, Juan; Del Pino, Manuel; Dolbeault, Jean; Musso, Monica; Wei, Juncheng (2019) Document de travail / Working paper
-
Davila, Juan; del Pino, Manuel; Dolbeault, Jean; Musso, Monica; Wei, Juncheng (2020) Document de travail / Working paper