Show simple item record

dc.contributor.authorLacoin, Hubert
dc.date.accessioned2011-04-30T12:33:57Z
dc.date.available2011-04-30T12:33:57Z
dc.date.issued2013
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/6123
dc.language.isoenen
dc.subjectInterfaceen
dc.subjectGlauber Dynamicsen
dc.subjectIsing modelen
dc.subjectMixing timeen
dc.subject.ddc519en
dc.titleApproximate Lifshitz law for the zero-temperature stochastic Ising model in any dimensionen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe study the Glauber dynamics for the zero-temperature Ising model in dimension d=4 with "plus" boundary condition. We show that the time T+ needed for a hyper-cube of size L entirely filled with "minus" spins to become entirely "plus" is O(L^2(log L)^c) for some constant c, not depending on the dimension. This brings further rigorous justification for the so-called "Lifshitz law" T+ = O(L^2) [5, 3] conjectured on heuristic grounds. The key point of our proof is to use the detail knowledge that we have on the three-dimensional problem: results for fluctuation of monotone interface at equilibrium and mixing time for monotone interface extracted from [2], to get the result in higher dimension.en
dc.relation.isversionofjnlnameCommunications in Mathematical Physics
dc.relation.isversionofjnlvol318
dc.relation.isversionofjnlissue2
dc.relation.isversionofjnldate2013
dc.relation.isversionofjnlpages291-305
dc.relation.isversionofdoihttp://dx.doi.org/10.1007/s00220-013-1667-4
dc.identifier.urlsitehttp://fr.arXiv.org/abs/1102.3466en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherSpringer
dc.subject.ddclabelProbabilités et mathématiques appliquéesen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record