dc.contributor.author | Lacoin, Hubert | |
dc.date.accessioned | 2011-04-30T12:33:57Z | |
dc.date.available | 2011-04-30T12:33:57Z | |
dc.date.issued | 2013 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/6123 | |
dc.language.iso | en | en |
dc.subject | Interface | en |
dc.subject | Glauber Dynamics | en |
dc.subject | Ising model | en |
dc.subject | Mixing time | en |
dc.subject.ddc | 519 | en |
dc.title | Approximate Lifshitz law for the zero-temperature stochastic Ising model in any dimension | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | We study the Glauber dynamics for the zero-temperature Ising model in dimension d=4 with "plus" boundary condition. We show that the time T+ needed for a hyper-cube of size L entirely filled with "minus" spins to become entirely "plus" is O(L^2(log L)^c) for some constant c, not depending on the dimension. This brings further rigorous justification for the so-called "Lifshitz law" T+ = O(L^2) [5, 3] conjectured on heuristic grounds. The key point of our proof is to use the detail knowledge that we have on the three-dimensional problem: results for fluctuation of monotone interface at equilibrium and mixing time for monotone interface extracted from [2], to get the result in higher dimension. | en |
dc.relation.isversionofjnlname | Communications in Mathematical Physics | |
dc.relation.isversionofjnlvol | 318 | |
dc.relation.isversionofjnlissue | 2 | |
dc.relation.isversionofjnldate | 2013 | |
dc.relation.isversionofjnlpages | 291-305 | |
dc.relation.isversionofdoi | http://dx.doi.org/10.1007/s00220-013-1667-4 | |
dc.identifier.urlsite | http://fr.arXiv.org/abs/1102.3466 | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | Springer | |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |