Show simple item record

dc.contributor.authorTrashorras, José
dc.date.accessioned2011-04-28T14:07:33Z
dc.date.available2011-04-28T14:07:33Z
dc.date.issued2006
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/6093
dc.language.isoenen
dc.subjectHopfield modelsen
dc.subjectLaplace’s methoden
dc.subjectLarge Deviationsen
dc.subjectFluctuationsen
dc.subjectMartingalesen
dc.subject.ddc515en
dc.titleLaplace's method and high temperature generalized Hopfield modelsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe consider a class of disordered mean-field spin systems that generalize the Hopfield model with many patterns in two ways: (i) General multi-spin interactions are permitted and (ii) the disorder variables have arbitrary distri- butions with finite exponential moments. We prove that for all models in this class the high temperature normalized partition function fluctuates according to (essentially) the same log-normal distribution. We also give an analogue statement concerning the fluctuations of the joint distribution of the overlaps of any number of replicas. The key ingredient in the proof of these results is an asymptotic expansion of the Laplace’s integral that we perform up to the 1/N-term.en
dc.relation.isversionofjnlnameMarkov Processes and Related Fields
dc.relation.isversionofjnlvol12en
dc.relation.isversionofjnlissue3en
dc.relation.isversionofjnldate2006
dc.relation.isversionofjnlpages583-626en
dc.description.sponsorshipprivateouien
dc.subject.ddclabelAnalyseen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record