• français
    • English
  • français 
    • français
    • English
  • Connexion
JavaScript is disabled for your browser. Some features of this site may not work without it.
Accueil

Afficher

Cette collectionPar Date de CréationAuteursTitresSujetsNoms de revueToute la baseCentres de recherche & CollectionsPar Date de CréationAuteursTitresSujetsNoms de revue

Mon compte

Connexion

Statistiques

Afficher les statistiques d'usage

Bayesian Monte Carlo Filtering for Stochastic Volatility Models

Thumbnail
Ouvrir
2004-15.pdf (1.130Mb)
Date
2004
Ville de l'éditeur
Paris
Nom de l'éditeur
Université Paris-Dauphine
Titre de la collection
Cahiers du CEREMADE
n° dans la collection
2004-15
Indexation documentaire
Probabilités et mathématiques appliquées
Subject
Monte Carlo Filtering; Particle Filter; Gibbs Sampling; Stochastic Volatility Models
Code JEL
C15
URI
https://basepub.dauphine.fr/handle/123456789/6066
Collections
  • CEREMADE : Publications
Métadonnées
Afficher la notice complète
Auteur
Casarin, Roberto
Type
Document de travail / Working paper
Nombre de pages du document
42
Résumé en anglais
Modelling of the fi nancial variable evolution represents an important issue in financial econometrics. Stochastic dynamic models allow to describe more accurately many features of the financial variables, but often there exists a trade-off between the modelling accuracy and the complexity. Moreover the degree of complexity is increased by the use of latent factors which are usually introduced in time series analysis, in order to capture the heterogeneous time evolution of the observed process. The presence of unobserved components makes the maximum likelihood inference more difficult to apply. Thus the Bayesian approach is preferable since it allows to treat general state space models and makes easier the simulation based approach to parameters estimation and latent factors filtering. The main aim of this work is to produce an updated review of Bayesian inference approaches for latent factor models. Moreover, we provide a review of simulation based filtering methods in a Bayesian perspective focusing, through some examples, on stochastic volatility models.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Cette création est mise à disposition sous un contrat Creative Commons.