• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Nonconvergence of the plain Newton-min algorithm for linear complementarity problems with a P-matrix

Gilbert, J. Charles; Ben Gharbia, Ibtihel (2012), Nonconvergence of the plain Newton-min algorithm for linear complementarity problems with a P-matrix, Mathematical Programming, 134, 2, p. 349-364. http://dx.doi.org/10.1007/s10107-010-0439-6

View/Open
nonconvergence.PDF (486.7Kb)
Type
Article accepté pour publication ou publié
Date
2012
Journal name
Mathematical Programming
Volume
134
Number
2
Publisher
Springer
Pages
349-364
Publication identifier
http://dx.doi.org/10.1007/s10107-010-0439-6
Metadata
Show full item record
Author(s)
Gilbert, J. Charles
Ben Gharbia, Ibtihel cc
Abstract (EN)
The plain Newton-min algorithm to solve the linear complementarity problem (LCP for short) 0 £ x^(Mx+q) ³ 00x(Mx+q)0 can be viewed as a semismooth Newton algorithm without globalization technique to solve the system of piecewise linear equations min(x, Mx + q) = 0, which is equivalent to the LCP. When M is an M-matrix of order n, the algorithm is known to converge in at most n iterations. We show in this paper that this result no longer holds when M is a P-matrix of order ≥ 3, since then the algorithm may cycle. P-matrices are interesting since they are those ensuring the existence and uniqueness of the solution to the LCP for an arbitrary q. Incidentally, convergence occurs for a P-matrix of order 1 or 2.
Subjects / Keywords
Linear complementarity problem; Newton’s method; Nonconvergence; Nonsmooth function; M-matrix; P-matrix

Related items

Showing items related by title and author.

  • Thumbnail
    Gas phase appearance and disappearance as a problem with complementarity constraints 
    Jaffré, Jérôme; Ben Gharbia, Ibtihel (2014) Article accepté pour publication ou publié
  • Thumbnail
    Résolution de problèmes de complémentarité : Application à un écoulement diphasique dans un milieu poreux 
    Ben Gharbia, Ibtihel (2012-12) Thèse
  • Thumbnail
    The degrees of freedom of the Lasso for general design matrix 
    Chesneau, Christophe; Peyré, Gabriel; Fadili, Jalal; Kachour, Maher; Dossal, Charles (2013) Article accepté pour publication ou publié
  • Thumbnail
    Heuristic and Exact Algorithms for the Interval Min–Max Regret Knapsack Problem 
    Furini, Fabio; Iori, Manuel; Martello, Silvano; Yagiura, Mutsunori (2015) Article accepté pour publication ou publié
  • Thumbnail
    Risk estimation for matrix recovery with spectral regularization 
    Deledalle, Charles-Alban; Vaiter, Samuel; Peyré, Gabriel; Fadili, Jalal; Dossal, Charles (2012) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo