• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • Consulter le document
  •   Accueil
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail

Tile-Packing Tomography Is NP-hard

Chrobak, Marek; Dürr, Christoph; Guinez, Flavio; Lozano, Antoni; Thang, Nguyen Kim (2012), Tile-Packing Tomography Is NP-hard, Algorithmica, 64, 2, p. 267-278. http://dx.doi.org/10.1007/s00453-011-9498-1

Voir/Ouvrir
tile_packing.PDF (184.7Kb)
Type
Article accepté pour publication ou publié
Date
2012
Nom de la revue
Algorithmica
Volume
64
Numéro
2
Éditeur
Springer
Pages
267-278
Identifiant publication
http://dx.doi.org/10.1007/s00453-011-9498-1
Métadonnées
Afficher la notice complète
Auteur(s)
Chrobak, Marek
Dürr, Christoph cc
Guinez, Flavio
Lozano, Antoni
Thang, Nguyen Kim
Résumé (EN)
Discrete tomography deals with reconstructing finite spatial objects from their projections. The objects we study in this paper are called tilings or tile-packings, and they consist of a number of disjoint copies of a fixed tile, where a tile is defined as a connected set of grid points. A row projection specifies how many grid points are covered by tiles in a given row; column projections are defined analogously. For a fixed tile, is it possible to reconstruct its tilings from their projections in polynomial time? It is known that the answer to this question is affirmative if the tile is a bar (its width or height is 1), while for some other types of tiles NP -hardness results have been shown in the literature. In this paper we present a complete solution to this question by showing that the problem remains NP-hard for all tiles other than bars.
Mots-clés
Tilings; Discrete tomography; NP-hardness; Affine independence

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    Non-clairvoyant Scheduling Games 
    Nguyen Kim, Thang; Dürr, Christoph; Cohen, Johanne (2011) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Online scheduling of bounded length jobs to maximize throughput 
    Nguyen Kim, Thang; Lukasz, Jez; Dürr, Christoph (2012) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Problèmes NP-difficiles : approximation modérément exponentielle et complexité paramétrique 
    Tourniaire, Emeric (2013-06)
  • Vignette de prévisualisation
    Algorithmes et Intractabilité de Certains Problèmes de Domination NP-difficiles avec Structure Privée 
    Dublois, Louis (2021-07-01) Thèse
  • Vignette de prévisualisation
    An overview on polynomial approximation of NP-hard problems 
    Paschos, Vangelis (2009) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo