
Tile-Packing Tomography Is NP-hard
Chrobak, Marek; Dürr, Christoph; Guinez, Flavio; Lozano, Antoni; Thang, Nguyen Kim (2012), Tile-Packing Tomography Is NP-hard, Algorithmica, 64, 2, p. 267-278. http://dx.doi.org/10.1007/s00453-011-9498-1
View/ Open
Type
Article accepté pour publication ou publiéDate
2012Journal name
AlgorithmicaVolume
64Number
2Publisher
Springer
Pages
267-278
Publication identifier
Metadata
Show full item recordAbstract (EN)
Discrete tomography deals with reconstructing finite spatial objects from their projections. The objects we study in this paper are called tilings or tile-packings, and they consist of a number of disjoint copies of a fixed tile, where a tile is defined as a connected set of grid points. A row projection specifies how many grid points are covered by tiles in a given row; column projections are defined analogously. For a fixed tile, is it possible to reconstruct its tilings from their projections in polynomial time? It is known that the answer to this question is affirmative if the tile is a bar (its width or height is 1), while for some other types of tiles NP -hardness results have been shown in the literature. In this paper we present a complete solution to this question by showing that the problem remains NP-hard for all tiles other than bars.Subjects / Keywords
Tilings; Discrete tomography; NP-hardness; Affine independenceRelated items
Showing items related by title and author.
-
Nguyen Kim, Thang; Dürr, Christoph; Cohen, Johanne (2011) Article accepté pour publication ou publié
-
Nguyen Kim, Thang; Lukasz, Jez; Dürr, Christoph (2012) Article accepté pour publication ou publié
-
Tourniaire, Emeric (2013-06)
-
Dublois, Louis (2021-07-01) Thèse
-
Paschos, Vangelis (2009) Article accepté pour publication ou publié