• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

On Singular Limits of Mean-Field Equations

Thumbnail
View/Open
2000-33.ps (802.2Kb)
singular.pdf (381.7Kb)
Date
2001
Dewey
Analyse
Sujet
Mean-field equations; convection-diffusion systems; Poisson equation; small-Debye-length limit
Journal issue
Archive for Rational Mechanics and Analysis
Volume
158
Number
4
Publication date
2001
Article pages
319-351
Publisher
Springer
DOI
http://dx.doi.org/10.1007/s002050100148
URI
https://basepub.dauphine.fr/handle/123456789/6032
Collections
  • CEREMADE : Publications
Metadata
Show full item record
Author
Unterreiter, Andreas
Markowich, Peter
Dolbeault, Jean
Type
Article accepté pour publication ou publié
Abstract (EN)
Mean-field equations arise as steady state versions of convection-diffusion systems where the convective field is determined by solution of a Poisson equation whose right-hand side is affine in the solutions of the convection-diffusion equations. In this paper we consider the repulsive coupling case for a system of two convection-diffusion equations. For general diffusivities we prove the existence of a unique solution of the mean-field equation by a variational analysis of a saddle point problem (usually without coercivity). Also we analyze the small-Debye-length limit and prove convergence to either the so-called charge-neutral case or to a double obstacle problem for the limiting potential depending on the data.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.