Exploratory Analysis of Functional Data via Clustering and Optimal Segmentation
dc.contributor.author | Rossi, Fabrice
HAL ID: 77 | |
dc.contributor.author | Lechevallier, Yves | |
dc.contributor.author | Hugueney, Bernard | |
dc.contributor.author | Hébrail, Georges | |
dc.date.accessioned | 2011-04-20T13:52:50Z | |
dc.date.available | 2011-04-20T13:52:50Z | |
dc.date.issued | 2010 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/6023 | |
dc.language.iso | en | en |
dc.subject | Dynamic programming | en |
dc.subject | Segmentation | en |
dc.subject | Clustering | en |
dc.subject | Exploratory analysis | en |
dc.subject | Multiple time series | en |
dc.subject | Functional Data | en |
dc.subject.ddc | 519 | |
dc.title | Exploratory Analysis of Functional Data via Clustering and Optimal Segmentation | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | We propose in this paper an exploratory analysis algorithm for functional data. The method partitions a set of functions into $K$ clusters and represents each cluster by a simple prototype (e.g., piecewise constant). The total number of segments in the prototypes, $P$, is chosen by the user and optimally distributed among the clusters via two dynamic programming algorithms. The practical relevance of the method is shown on two real world datasets. | en |
dc.relation.isversionofjnlname | Neurocomputing | |
dc.relation.isversionofjnlvol | 73 | en |
dc.relation.isversionofjnlissue | 7-9 | en |
dc.relation.isversionofjnldate | 2010-03 | |
dc.relation.isversionofjnlpages | 1125-1141 | en |
dc.relation.isversionofdoi | http://dx.doi.org/10.1016/j.neucom.2009.11.022 | en |
dc.identifier.urlsite | http://fr.arxiv.org/abs/1004.0456 | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | Elsevier | en |
dc.subject.ddclabel | Probabilités et mathématiques appliquées |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |