Exploratory Analysis of Functional Data via Clustering and Optimal Segmentation
Rossi, Fabrice; Lechevallier, Yves; Hugueney, Bernard; Hébrail, Georges (2010), Exploratory Analysis of Functional Data via Clustering and Optimal Segmentation, Neurocomputing, 73, 7-9, p. 1125-1141. http://dx.doi.org/10.1016/j.neucom.2009.11.022
Type
Article accepté pour publication ou publiéLien vers un document non conservé dans cette base
http://fr.arxiv.org/abs/1004.0456Date
2010Nom de la revue
NeurocomputingVolume
73Numéro
7-9Éditeur
Elsevier
Pages
1125-1141
Identifiant publication
Métadonnées
Afficher la notice complèteRésumé (EN)
We propose in this paper an exploratory analysis algorithm for functional data. The method partitions a set of functions into $K$ clusters and represents each cluster by a simple prototype (e.g., piecewise constant). The total number of segments in the prototypes, $P$, is chosen by the user and optimally distributed among the clusters via two dynamic programming algorithms. The practical relevance of the method is shown on two real world datasets.Mots-clés
Dynamic programming; Segmentation; Clustering; Exploratory analysis; Multiple time series; Functional DataPublications associées
Affichage des éléments liés par titre et auteur.
-
Bouchareb, Aichetou; Boullé, Marc; Clérot, Fabrice; Rossi, Fabrice (2019) Chapitre d'ouvrage
-
Collectif Revue Des Nouvelles Technologies De L'information,; Diday, Edwin; Saporta, Gilbert; Lechevallier, Yves; Guan, Rong; Wang, Huiwen (2020) Ouvrage
-
Bouchareb, Aichetou; Boullé, Marc; Clérot, Fabrice; Rossi, Fabrice (2019) Chapitre d'ouvrage
-
Conan-Guez, Brieuc; Rossi, Fabrice (2005) Article accepté pour publication ou publié
-
Hugueney, Bernard (2006) Communication / Conférence