Show simple item record

dc.contributor.authorDolbeault, Jean
HAL ID: 87
ORCID: 0000-0003-4234-2298
dc.contributor.authorIllner, Reinhard
dc.date.accessioned2011-04-19T14:30:07Z
dc.date.available2011-04-19T14:30:07Z
dc.date.issued2003
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/6021
dc.language.isoenen
dc.subjectTraffic flowen
dc.subjecttime-dependent diffusionsen
dc.subjectdrift-diffusion equationsen
dc.subjectnonlinear friction and diffusion coefficientsen
dc.subjectentropy methoden
dc.subjectrelative entropyen
dc.subjectlarge time asymptoticsen
dc.subject.ddc515en
dc.titleEntropy methods for kinetic models of traffic flowen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenIn these notes we first introduce logarithmic entropy methods for time-dependent drift-diffusion equations and then consider a kinetic model of Vlasov-Fokker-Planck type for traffic flows. In the spatially homogeneous case the model reduces to a special type of nonlinear driftdiffusion equation which may permit the existence of several stationary states corresponding to the same density. Then we define general convex entropies and prove a convergence result for large times to steady states, even if more than one exists in the considered range of parameters, provided that some entropy estimates are uniformly bounded.en
dc.relation.isversionofjnlnameCommunications in Mathematical Sciences
dc.relation.isversionofjnlvol1en
dc.relation.isversionofjnlissue3en
dc.relation.isversionofjnldate2003
dc.relation.isversionofjnlpages409-421en
dc.relation.isversionofdoihttp://projecteuclid.org/euclid.cms/1250880093en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherInternational Pressen
dc.subject.ddclabelAnalyseen


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record