• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Entropy methods for kinetic models of traffic flow

Dolbeault, Jean; Illner, Reinhard (2003), Entropy methods for kinetic models of traffic flow, Communications in Mathematical Sciences, 1, 3, p. 409-421. http://projecteuclid.org/euclid.cms/1250880093

View/Open
2002-30.pdf (217.7Kb)
2002-30.ps (226.8Kb)
Type
Article accepté pour publication ou publié
Date
2003
Journal name
Communications in Mathematical Sciences
Volume
1
Number
3
Publisher
International Press
Pages
409-421
Publication identifier
http://projecteuclid.org/euclid.cms/1250880093
Metadata
Show full item record
Author(s)
Dolbeault, Jean cc
Illner, Reinhard
Abstract (EN)
In these notes we first introduce logarithmic entropy methods for time-dependent drift-diffusion equations and then consider a kinetic model of Vlasov-Fokker-Planck type for traffic flows. In the spatially homogeneous case the model reduces to a special type of nonlinear driftdiffusion equation which may permit the existence of several stationary states corresponding to the same density. Then we define general convex entropies and prove a convergence result for large times to steady states, even if more than one exists in the considered range of parameters, provided that some entropy estimates are uniformly bounded.
Subjects / Keywords
Traffic flow; time-dependent diffusions; drift-diffusion equations; nonlinear friction and diffusion coefficients; entropy method; relative entropy; large time asymptotics

Related items

Showing items related by title and author.

  • Thumbnail
    Remarks on a class of kinetic models of granular media: asymptotics and entropy bounds 
    Agueh, Martial; Carlier, Guillaume; Illner, Reinhard (2015) Article accepté pour publication ou publié
  • Thumbnail
    A qualitative study of linear drift-diffusion equations with time-dependent or degenerate coefficients 
    Kowalczyk, Michal; Illner, Reinhard; Dolbeault, Jean; Bartier, Jean-Philippe (2007) Article accepté pour publication ou publié
  • Thumbnail
    On Asymmetric Quasiperiodic Solutions of Hartree–Fock Systems 
    Lange, Horst; Dolbeault, Jean; Illner, Reinhard (2002) Article accepté pour publication ou publié
  • Thumbnail
    Functional inequalities: nonlinear flows and entropy methods as a tool for obtaining sharp and constructive results 
    Dolbeault, Jean (2021) Document de travail / Working paper
  • Thumbnail
    Stability in Gagliardo-Nirenberg-Sobolev inequalities: flows, regularity and the entropy method 
    Bonforte, Matteo; Dolbeault, Jean; Nazaret, Bruno; Simonov, Nikita (2021) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo