An Alternative proof of SAT NP-Completeness
hal.structure.identifier | Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE] | |
dc.contributor.author | Paschos, Vangelis | |
hal.structure.identifier | Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE] | |
dc.contributor.author | Escoffier, Bruno
HAL ID: 5124 | |
dc.date.accessioned | 2011-04-18T14:43:06Z | |
dc.date.available | 2011-04-18T14:43:06Z | |
dc.date.issued | 2004 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/5998 | |
dc.language.iso | en | en |
dc.subject | NP-completeness | |
dc.subject | reductions | |
dc.subject | second order logic. | |
dc.subject.ddc | 003 | en |
dc.title | An Alternative proof of SAT NP-Completeness | |
dc.type | Document de travail / Working paper | |
dc.description.abstracten | We give a proof of SAT's NP-completeness based upon a syntaxic characterization of NP given by Fagin at 1974. Then, we illustrate a part of our proof by giving examples of how two well-known problems, MAX INDEPENDENT SET and 3- COLORING, can be expressed in terms of CNF. Finally, in the same spirit we demonstrate the min NPO-completeness of MIN WSAT under strict reductions. | |
dc.publisher.city | Paris | en |
dc.identifier.citationpages | 207-213 | |
dc.relation.ispartofseriestitle | Annales du LAMSADE | |
dc.description.sponsorshipprivate | oui | en |
dc.subject.ddclabel | Recherche opérationnelle | en |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | oui | |
dc.description.readership | recherche | |
dc.description.audience | International | |
dc.date.updated | 2020-07-22T14:24:45Z | |
hal.author.function | aut | |
hal.author.function | aut |