• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Fast Algorithms for max independent set

Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis; Van Rooij, Johan (2012), Fast Algorithms for max independent set, Algorithmica, 62, 1-2, p. 382-415. 10.1007/s00453-010-9460-7

View/Open
fast_algorithms.PDF (348.5Kb)
Type
Article accepté pour publication ou publié
Date
2012
Journal name
Algorithmica
Volume
62
Number
1-2
Publisher
Springer
Pages
382-415
Publication identifier
10.1007/s00453-010-9460-7
Metadata
Show full item record
Author(s)
Bourgeois, Nicolas
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Escoffier, Bruno
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Paschos, Vangelis
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Van Rooij, Johan
University of Utrecht
Abstract (EN)
We first propose a method, called “bottom-up method” that, informally, “propagates” improvement of the worst-case complexity for “sparse” instances to “denser” ones and we show an easy though non-trivial application of it to the min set cover problem. We then tackle max independent set. Here, we propagate improvements of worst-case complexity from graphs of average degree d to graphs of average degree greater than d. Indeed, using algorithms for max independent set in graphs of average degree 3, we successively solve max independent set in graphs of average degree 4, 5 and 6. Then, we combine the bottom-up technique with measure and conquer techniques to get improved running times for graphs of maximum degree 5 and 6 but also for general graphs. The computation bounds obtained for max independent set are O ∗(1.1571 n ), O ∗(1.1895 n ) and O ∗(1.2050 n ), for graphs of maximum (or more generally average) degree 4, 5 and 6 respectively, and O ∗(1.2114 n ) for general graphs. These results improve upon the best known results for these cases for polynomial space algorithms.
Subjects / Keywords
Max independent set; Bottom-up method; Exact algorithms

Related items

Showing items related by title and author.

  • Thumbnail
    Fast algorithms for Max Independant Set in graphs of small average degree 
    van Rooij, Johan; Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis (2008) Document de travail / Working paper
  • Thumbnail
    A Bottom-Up Method and Fast Algorithms for max independent set 
    Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis (2010) Communication / Conférence
  • Thumbnail
    An O *(1.0977 n ) Exact Algorithm for max independent set in Sparse Graphs 
    Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis (2008) Communication / Conférence
  • Thumbnail
    Fast Algorithms for min independent dominating set 
    Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis (2010) Communication / Conférence
  • Thumbnail
    Fast algorithms for min independent dominating set 
    Bourgeois, Nicolas; Della Croce, Federico; Escoffier, Bruno; Paschos, Vangelis (2013) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo