• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Representation of Functional Data in Neural Networks

Conan-Guez, Brieuc; Delannay, Nicolas; Rossi, Fabrice; Verleysen, Michel (2005), Representation of Functional Data in Neural Networks, Neurocomputing, 64, p. 183--210. http://dx.doi.org/10.1016/j.neucom.2004.11.012

Type
Article accepté pour publication ou publié
Date
2005
Journal name
Neurocomputing
Volume
64
Publisher
Elsevier
Pages
183--210
Publication identifier
http://dx.doi.org/10.1016/j.neucom.2004.11.012
Metadata
Show full item record
Author(s)
Conan-Guez, Brieuc

Delannay, Nicolas

Rossi, Fabrice

Verleysen, Michel
Abstract (EN)
Functional Data Analysis (FDA) is an extension of traditional data analysis to functional data, for example spectra, temporal series, spatio-temporal images, gesture recognition data, etc. Functional data are rarely known in practice; usually a regular or irregular sampling is known. For this reason, some processing is needed in order to benefit from the smooth character of functional data in the analysis methods. This paper shows how to extend the Radial-Basis Function Networks (RBFN) and Multi-Layer Perceptron (MLP) models to functional data inputs, in particular when the latter are known through lists of input-output pairs. Various possibilities for functional processing are discussed, including the projection on smooth bases, Functional Principal Component Analysis, functional centering and reduction, and the use of differential operators. It is shown how to incorporate these functional processing into the RBFN and MLP models. The functional approach is illustrated on a benchmark of spectrometric data analysis.
Subjects / Keywords
Functional data analysis; smooth data; projection on smooth bases; irregular sampling; missing data

Related items

Showing items related by title and author.

  • Thumbnail
    Functional Multi-Layer Perceptron: a Nonlinear Tool for Functional Data Analysis 
    Conan-Guez, Brieuc; Rossi, Fabrice (2005) Article accepté pour publication ou publié
  • Thumbnail
    Multi-Layer Perceptrons and Symbolic Data 
    Rossi, Fabrice; Conan-Guez, Brieuc (2008) Chapitre d'ouvrage
  • Thumbnail
    Un modèle neuronal pour la régression et la discrimination sur données fonctionnelles 
    Rossi, Fabrice; Conan-Guez, Brieuc (2005) Article accepté pour publication ou publié
  • Thumbnail
    Un modèle semi-paramétrique neuronal pour la régression et la discrimination sur données fonctionnelles 
    Rossi, Fabrice; Conan-Guez, Brieuc (2003) Document de travail / Working paper
  • Thumbnail
    Estimation consistante des paramètres d'un modèle non linéaire pour des données fonctionnelles discrétisées aléatoirement 
    Conan-Guez, Brieuc; Rossi, Fabrice (2005) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo