• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Differential approximation results for the traveling salesman problem with distances 1 and 2

Monnot, Jérôme; Paschos, Vangelis; Toulouse, Sophie (2001), Differential approximation results for the traveling salesman problem with distances 1 and 2, in Freivalds, Rusins, Fundamentals of Computation Theory 13th International Symposium, FCT 2001, Riga, Latvia, August 22-24, 2001. Proceedings, Springer : Berlin, p. 275-286. http://dx.doi.org/10.1007/3-540-44669-9_27

View/Open
distances1_2.PDF (182.1Kb)
Type
Communication / Conférence
Date
2001
Conference title
13th International Symposium on Fundamentals of Computation Theory (FCT'01)
Conference date
2001-08
Conference city
Riga
Conference country
Lettonie
Book title
Fundamentals of Computation Theory 13th International Symposium, FCT 2001, Riga, Latvia, August 22-24, 2001. Proceedings
Book author
Freivalds, Rusins
Publisher
Springer
Series title
Lecture Notes in Computer Science
Series number
2138
Published in
Berlin
ISBN
978-3-540-42487-1
Number of pages
541
Pages
275-286
Publication identifier
http://dx.doi.org/10.1007/3-540-44669-9_27
Metadata
Show full item record
Author(s)
Monnot, Jérôme cc
Paschos, Vangelis
Toulouse, Sophie cc
Abstract (EN)
We prove that both minimum and maximum traveling salesman problems on complete graphs with edge-distances 1 and 2 are approximable within 3/4. Based upon this result, we improve the standard approximation ratio known for maximum traveling salesman with distances 1 and 2 from 3/4 to 7/8. Finally, we prove that, for any ε > 0, it is NP-hard to approximate both problems within better than 5379/5380 + ε.
Subjects / Keywords
Approximation ratio; Traveling Salesman; Graphs

Related items

Showing items related by title and author.

  • Thumbnail
    Differential approximation results for the traveling salesman problem with distances 1 and 2 
    Toulouse, Sophie; Paschos, Vangelis; Monnot, Jérôme (2003) Article accepté pour publication ou publié
  • Thumbnail
    Differential approximation of the traveling salesman problem 
    Monnot, Jérôme; Paschos, Vangelis; Toulouse, Sophie (2002) Communication / Conférence
  • Thumbnail
    Approximation algorithms for the traveling salesman problem 
    Paschos, Vangelis; Monnot, Jérôme; Toulouse, Sophie (2003) Article accepté pour publication ou publié
  • Thumbnail
    Differential approximation results for the traveling salesman and related problems 
    Monnot, Jérôme (2002) Article accepté pour publication ou publié
  • Thumbnail
    Differential approximation results for the Steiner tree problem 
    Monnot, Jérôme; Demange, Marc; Paschos, Vangelis (2003) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo