• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Approximation complexity of min-max (regret) versions of shortest path, spanning tree, and knapsack

Aissi, Hassene; Bazgan, Cristina; Vanderpooten, Daniel (2005), Approximation complexity of min-max (regret) versions of shortest path, spanning tree, and knapsack, in Leonardi, Stefano, Algorithms – ESA 2005 13th Annual European Symposium, Palma de Mallorca, Spain, October 3-6, 2005, Proceedings, Springer : Berlin Heidelberg, p. 862-873

View/Open
aissi_approximation.PDF (166.6Kb)
Type
Communication / Conférence
Date
2005
Conference country
SPAIN
Book title
Algorithms – ESA 2005 13th Annual European Symposium, Palma de Mallorca, Spain, October 3-6, 2005, Proceedings
Book author
Leonardi, Stefano
Publisher
Springer
Published in
Berlin Heidelberg
ISBN
978-3-540-29118-3
Pages
862-873
Metadata
Show full item record
Author(s)
Aissi, Hassene

Bazgan, Cristina

Vanderpooten, Daniel
Abstract (EN)
This paper investigates, for the first time in the literature, the approximation of min-max (regret) versions of classical problems like shortest path, minimum spanning tree, and knapsack. For a bounded number of scenarios, we establish fully polynomial-time approximation schemes for the min-max versions of these problems, using relationships between multi-objective and min-max optimization. Using dynamic programming and classical trimming techniques, we construct a fully polynomial-time approximation scheme for min-max regret shortest path. We also establish a fully polynomial-time approximation scheme for min-max regret spanning tree and prove that min-max regret knapsack is not at all approximable. We also investigate the case of an unbounded number of scenarios, for which min-max and min-max regret versions of polynomial-time solvable problems usually become strongly NP-hard. In this setting, non-approximability results are provided for min-max (regret) versions of shortest path and spanning tree.
Subjects / Keywords
shortest path; min-max; minimum spanning tree; knapsack; approximation; min-max regret; fptas

Related items

Showing items related by title and author.

  • Thumbnail
    Approximation of min-max and min-max regret versions of some combinatorial optimization problems 
    Aissi, Hassene; Bazgan, Cristina; Vanderpooten, Daniel (2007) Article accepté pour publication ou publié
  • Thumbnail
    Min–max and min–max regret versions of combinatorial optimization problems: A survey 
    Aissi, Hassene; Bazgan, Cristina; Vanderpooten, Daniel (2009) Article accepté pour publication ou publié
  • Thumbnail
    Complexity of the min-max and min-max regret assignment problems 
    Aissi, Hassene; Bazgan, Cristina; Vanderpooten, Daniel (2005) Article accepté pour publication ou publié
  • Thumbnail
    Complexity of the min-max (regret) versions of cut problems 
    Aissi, Hassene; Bazgan, Cristina; Vanderpooten, Daniel (2005) Communication / Conférence
  • Thumbnail
    Complexity of the min-max (regret) versions of cut problems 
    Aissi, Hassene; Bazgan, Cristina; Vanderpooten, Daniel (2008) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo