• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Weighted node coloring: when stable sets are expensive

Demange, Marc; de Werra, Dominique; Monnot, Jérôme; Paschos, Vangelis (2002), Weighted node coloring: when stable sets are expensive, in Kucera, Ludek, Graph-Theoretic Concepts in Computer Science 28th International Workshop, WG 2002, Cesky Krumlov, Czech Republic, June 13-15, 2002, Revised Papers, Springer : Berlin, p. 114-125. http://dx.doi.org/10.1007/3-540-36379-3_11

Type
Communication / Conférence
Date
2002
Conference title
28th International Workshop on Graph-Theoretic Concepts in Computer Science (WG'02)
Conference date
2002-06
Conference city
Cesky Krumlov
Conference country
République tchèque
Book title
Graph-Theoretic Concepts in Computer Science 28th International Workshop, WG 2002, Cesky Krumlov, Czech Republic, June 13-15, 2002, Revised Papers
Book author
Kucera, Ludek
Publisher
Springer
Series title
Lecture Notes in Computer Science
Series number
2573
Published in
Berlin
ISBN
978-3-540-00331-1
Number of pages
422
Pages
114-125
Publication identifier
http://dx.doi.org/10.1007/3-540-36379-3_11
Metadata
Show full item record
Author(s)
Demange, Marc
de Werra, Dominique
Monnot, Jérôme cc
Paschos, Vangelis
Abstract (EN)
A version of weighted coloring of a graph is introduced: each node υ of a graph G = (V,E) is provided with a positive integer weight w(υ) and the weight of a stable set S of G is w(S) = maxw(υ) : υ ∈ V ∩ S. A k-coloring S = (S 1, . . . , S k) of G is a partition of V into k stable sets S 1, . . . , S k and the weight of S is w(S 1) + . . . + w(S k ). The objective then is to find a coloring S = (S 1, . . . , S k ) of G such that w(S 1) + . . . + w(S k ) is minimized. Weighted node coloring is NP-hard for general graphs (as generalization of the node coloring problem). We prove here that the associated decision problems are NP-complete for bipartite graphs, for line-graphs of bipartite graphs and for split graphs. We present approximation results for general graphs. For the other families of graphs dealt, properties of optimal solutions are discussed and complexity and approximability results are presented.
Subjects / Keywords
Graphs

Related items

Showing items related by title and author.

  • Thumbnail
    Complexity and approximation results for the min weighted node coloring problem 
    Escoffier, Bruno; Demange, Marc; Paschos, Vangelis; de Werra, Dominique; Monnot, Jérôme (2008) Chapitre d'ouvrage
  • Thumbnail
    Weighted coloring on planar, bipartite and split graphs: complexity and approximation 
    Paschos, Vangelis; Monnot, Jérôme; Escoffier, Bruno; Demange, Marc; de Werra, Dominique (2009) Article accepté pour publication ou publié
  • Thumbnail
    Weighted edge coloring 
    Escoffier, Bruno; Demange, Marc; de Werra, Dominique; Milis, Ioannis; Lucarelli, Giorgio; Paschos, Vangelis; Monnot, Jérôme (2008) Chapitre d'ouvrage
  • Thumbnail
    Weighted coloring on planar, bipartite and split graphs: complexity and improved approximation 
    de Werra, Dominique; Demange, Marc; Escoffier, Bruno; Monnot, Jérôme; Paschos, Vangelis (2004) Communication / Conférence
  • Thumbnail
    The hypocoloring problem: complexity and approximability results when the chromatic number is small 
    de Werra, Dominique; Demange, Marc; Monnot, Jérôme; Paschos, Vangelis (2004) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo