Show simple item record

dc.contributor.authorDolbeault, Jean
dc.contributor.authorMarkowich, Peter
dc.contributor.authorOelz, Dietmar
dc.contributor.authorSchmeiser, Christian
dc.date.accessioned2009-06-30T12:53:11Z
dc.date.available2009-06-30T12:53:11Z
dc.date.issued2007
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/575
dc.language.isoenen
dc.subjectKinetic equation; Macroscopic limit; Diffusion limit; Boltzmann equation; Equilibrium distribution function; Gibbs state; Porous medium equation; Fast diffusion equation; Relaxation time approximation; Compensated compactnessen
dc.subject.ddc515en
dc.titleNonlinear diffusions as limit of kinetic equations with relaxation collision kernelsen
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherVienna University of Technology;Autriche
dc.contributor.editoruniversityotherAustrian Academy of Sciences;Autriche
dc.contributor.editoruniversityotherUniversity of Vienna;Autriche
dc.description.abstractenKinetic transport equations with a given confining potential and non-linear relaxation type collision operators are considered. General (monotone) energy dependent equilibrium distributions are allowed with a chemical potential ensuring mass conservation. Existence and uniqueness of solutions is proven for initial data bounded by equilibrium distributions. The diffusive macroscopic limit is carried out using compensated compactness theory. The result are drift-diffusion equations with nonlinear diffusion. The most notable examples are of porous medium or fast diffusion type, with exponent ranging from 0 to 5/3, in dimension 3.en
dc.relation.isversionofjnlnameArchive for Rational Mechanics and Analysis
dc.relation.isversionofjnlvol186en
dc.relation.isversionofjnlissue1en
dc.relation.isversionofjnldate2007
dc.relation.isversionofjnlpages133-158en
dc.relation.isversionofdoihttp://dx.doi.org/10.1007/s00205-007-0049-5en
dc.identifier.urlsitehttp://hal.archives-ouvertes.fr/hal-00005892/en/en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherSpringeren
dc.subject.ddclabelAnalyseen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record