• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion

Dolbeault, Jean (2011), Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion, Mathematical Research Letters, 18, 6, p. 1037-1050. http://dx.doi.org/10.4310/MRL.2011.v18.n6.a1

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00573943/fr/
Date
2011-03
Journal name
Mathematical Research Letters
Volume
18
Number
6
Publisher
International Press
Pages
1037-1050
Publication identifier
http://dx.doi.org/10.4310/MRL.2011.v18.n6.a1
Metadata
Show full item record
Author(s)
Dolbeault, Jean cc
Abstract (EN)
In the euclidean space, Sobolev and Hardy-Littlewood-Sobolev inequalities can be related by duality. In this paper, we investigate how to relate these inequalities using the flow of a fast diffusion equation in dimension $d\ge3$. The main consequence is an improvement of Sobolev's inequality when $d\ge5$, which involves the various terms of the dual Hardy-Littlewood-Sobolev inequality. In dimension $d=2$, Onofri's inequality plays the role of Sobolev's inequality and can also be related to its dual inequality, the logarithmic Hardy-Littlewood-Sobolev inequality, by a super-fast diffusion equation.
Subjects / Keywords
extinction; fast diffusion equation; stereographic projection; best constants; duality; extremal functions; Gagliardo-Nirenberg inequality; Onofri's inequality; Sobolev's inequality; logarithmic Hardy-Littlewood-Sobolev inequality; Hardy-Littlewood-Sobolev inequality; Sobolev spaces

Related items

Showing items related by title and author.

  • Thumbnail
    Sobolev and Hardy-Littlewood-Sobolev inequalities 
    Jankowiak, Gaspard; Dolbeault, Jean (2014) Article accepté pour publication ou publié
  • Thumbnail
    A functional framework for the Keller-Segel system: logarithmic Hardy-Littlewood-Sobolev and related spectral gap inequalities 
    Campos Serrano, Juan; Dolbeault, Jean (2012) Article accepté pour publication ou publié
  • Thumbnail
    Reverse Hardy-Littlewood-Sobolev inequalities 
    Carillo, José A.; Delgadino, Matías; Dolbeault, Jean; Frank, Rupert L.; Hoffmann, Franca (2019) Article accepté pour publication ou publié
  • Thumbnail
    Reverse Hardy-Littlewood-Sobolev inequalities 
    Carillo, José A.; Delgadino, Matías; Dolbeault, Jean; Rupert, Frank; Hoffmann, Franca (2018) Document de travail / Working paper
  • Thumbnail
    Reverse Hardy-Littlewood-Sobolev inequalities 
    Dolbeault, Jean; Frank, Rupert L.; Hoffmann, Franca (2018) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo