• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Optimal stopping of a mean reverting diffusion: minimizing the relative distance to the maximum

Espinosa, Gilles-Edouard; Elie, Romuald (2011-02), Optimal stopping of a mean reverting diffusion: minimizing the relative distance to the maximum. https://basepub.dauphine.fr/handle/123456789/5730

Type
Document de travail / Working paper
External document link
http://hal.archives-ouvertes.fr/hal-00573429/fr/
Date
2011-02
Publisher
Université Paris-Dauphine
Published in
Paris
Pages
37
Metadata
Show full item record
Author(s)
Espinosa, Gilles-Edouard
Elie, Romuald
Abstract (EN)
Considering a diffusion $X$ mean reverting to 0 {and starting at $X_0>0$}, we study the control problem $$ \inf_\theta \Esp{f\left(\frac{X_\theta}{\Sup_{s\in[0,\tau]}{X_s}}\right)}\;,$$ where $f$ is a given function and $\tau$ is the next random time where the diffusion $X$ crosses zero. Our motivation is the obtention of optimal selling rules related to the minimization of the relative distance between a stopped mean reverting portfolio and its upcoming maximum. We provide a verification result for this stochastic control problem and derive the solution for different criteria $f$. For a power utility type criterion $f:y \mapsto - {y^\la}$ with $\la>0$, instantaneous stopping is always optimal. On the contrary, for a relative quadratic error criterion, $f:y \mapsto {(1-y)^2}$, selling is optimal as soon as the process $X$ crosses a specified function $\varphi$ of its running maximum $X^*$. As in [5] and [8], the inverse of $\varphi$ identifies as the maximal solution of a highly non linear ordinary differential equation. These results reinforce the idea that optimal prediction problems of similar type lead easily to solutions of different nature. Nevertheless, we observe numerically that the continuation region for the relative quadratic error criterion is very small, so that the optimal selling strategy is close to immediate stopping.
Subjects / Keywords
Mean reverting diffusion; Verification; Free boundary PDE; Running maximum; Optimal prediction; Optimal stopping

Related items

Showing items related by title and author.

  • Thumbnail
    Optimal selling rules for monetary invariant criteria: tracking the maximum of a portfolio with negative drift, 
    Espinosa, Gilles-Edouard; Elie, Romuald (2015) Article accepté pour publication ou publié
  • Thumbnail
    Detecting the Maximum of a Scalar Diffusion with Negative Drift 
    Espinosa, Gilles-Edouard; Touzi, Nizar (2012) Article accepté pour publication ou publié
  • Thumbnail
    Measuring the misfit between seismograms using an optimal transport distance: application to full waveform inversion 
    Métivier, Ludovic; Brossier, Romain; Mérigot, Quentin; Oudet, Edouard; Virieux, Jean (2016) Article accepté pour publication ou publié
  • Thumbnail
    Increasing the robustness and applicability of full-waveform inversion: An optimal transport distance strategy 
    Métivier, L.; Brossier, Romain; Mérigot, Quentin; Oudet, Édouard; Virieux, Jean (2016) Article accepté pour publication ou publié
  • Thumbnail
    Constrained Backward SDEs with Jumps: Application to Optimal Switching 
    Elie, Romuald; Kharroubi, Idris (2009) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo