• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Variational methods in relativistic quantum mechanics

Esteban, Maria J.; Lewin, Mathieu; Séré, Eric (2008), Variational methods in relativistic quantum mechanics, Bulletin of the American Mathematical Society, 45, 4, p. 535–593. http://dx.doi.org/10.1090/S0273-0979-08-01212-3

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00156710/en/
Date
2008
Journal name
Bulletin of the American Mathematical Society
Volume
45
Number
4
Publisher
American Mathematical Society
Pages
535–593
Publication identifier
http://dx.doi.org/10.1090/S0273-0979-08-01212-3
Metadata
Show full item record
Author(s)
Esteban, Maria J. cc
Lewin, Mathieu cc
Séré, Eric
Abstract (EN)
This review is devoted to the study of stationary solutions of linear and nonlinear equations from relativistic quantum mechanics, involving the Dirac operator. The solutions are found as critical points of an energy functional. Contrary to the Laplacian appearing in the equations of nonrelativistic quantum mechanics, the Dirac operator has a negative continuous spectrum which is not bounded from below. This has two main consequences. First, the energy functional is strongly indefinite. Second, the Euler-Lagrange equations are linear or nonlinear eigenvalue problems with eigenvalues lying in a spectral gap (between the negative and positive continuous spectra). Moreover, since we work in the space domain R^3, the Palais-Smale condition is not satisfied. For these reasons, the problems discussed in this review pose a challenge in the Calculus of Variations. The existence proofs involve sophisticated tools from nonlinear analysis and have required new variational methods which are now applied to other problems.
Subjects / Keywords
Quantum Chemistry; mean-field approximation; Dirac-Fock equations; Hartree-Fock equations; Bogoliubov-Dirac-Fock method; Quantum Electrodynamics; nonrelativistic limit; ground state; nonlinear eigenvalue problems; strongly indefinite functionals; critical points; variational methods; Dirac operator; Relativistic quantum mechanics

Related items

Showing items related by title and author.

  • Thumbnail
    Variational Methods in Relativistic Quantum Mechanics: New Approach to the Computation of Dirac Eigenvalues 
    Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2000) Communication / Conférence
  • Thumbnail
    A Minimization Method for Relativistic Electrons in a Mean-Field Approximation of Quantum Electrodynamics 
    Solovej, Jan Philip; Séré, Eric; Lewin, Mathieu; Hainzl, Christian (2007-06) Article accepté pour publication ou publié
  • Thumbnail
    A variational method for relativistic computations in atomic and molecular physics 
    Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2003) Article accepté pour publication ou publié
  • Thumbnail
    Computational approaches of relativistic models in quantum chemistry 
    Desclaux, J.P.; Dolbeault, Jean; Esteban, Maria J.; Indelicato, P.; Séré, Eric (2003) Chapitre d'ouvrage
  • Thumbnail
    Symmetry Breaking of Relativistic Multiconfiguration Methods in the Nonrelativistic Limit 
    Savin, Andreas; Lewin, Mathieu; Esteban, Maria J. (2010) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo