Parametric families on large binary spaces
Schäfer, Christian (2011-02), Parametric families on large binary spaces. https://basepub.dauphine.fr/handle/123456789/5718
Type
Document de travail / Working paperExternal document link
http://hal.archives-ouvertes.fr/hal-00507420/fr/Date
2011-02Publisher
Université Paris-Dauphine
Published in
Paris
Pages
13
Metadata
Show full item recordAuthor(s)
Schäfer, ChristianAbstract (EN)
In the context of adaptive Monte Carlo algorithms, we cannot directly generate independent samples from the distribution of interest but use a proxy which we need to be close to the target. Generally, such a proxy distribution is a parametric family on the sampling spaces of the target distribution. For continuous sampling problems in high dimensions, we often use the multivariate normal distribution as a proxy for we can easily parametrise it by its moments and quickly sample from it. Our objective is to construct similarly flexible parametric families on binary sampling spaces too large for exhaustive enumeration. The binary sampling problem is more difficult than its continuous counterpart since the choice of a suitable proxy distribution is not obvious.Subjects / Keywords
Multivariate binary data; Binary proposal distributions; Adaptive Monte Carlo; Binary parametric familiesRelated items
Showing items related by title and author.
-
Schäfer, Christian; Chopin, Nicolas (2013) Article accepté pour publication ou publié
-
Schäfer, Christian; Chopin, Nicolas (2011) Article accepté pour publication ou publié
-
Schäfer, Christian (2013) Article accepté pour publication ou publié
-
Schäfer, Christian (2012-11) Thèse
-
Schäfer, Christian (2011) Document de travail / Working paper