• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Méthodes de Monte-Carlo avec R

Robert, Christian P.; Casella, George (2011), Méthodes de Monte-Carlo avec R, Springer : Berlin, p. 256

Type
Ouvrage
Date
2011
Publisher
Springer
Published in
Berlin
ISBN
978-2-8178-0180-3
Pages
256
Metadata
Show full item record
Author(s)
Robert, Christian P.
Casella, George
Abstract (FR)
Les techniques informatiques de simulation sont essentielles au statisticien. Afin que celui-ci puisse les utiliser en vue de résoudre des problèmes statistiques, il lui faut au préalable développer son intuition et sa capacité à produire lui-même des modèles de simulation. Ce livre adopte donc le point de vue du programmeur pour exposer ces outils fondamentaux de simulation stochastique. Il montre comment les implémenter sous R et donne les clés d'une meilleure compréhension des méthodes exposées en vue de leur comparaison, sans s'attarder trop longuement sur leur justification théorique. Les auteurs présentent les algorithmes de base pour la génération de données aléatoires, les techniques de Monte-Carlo pour l'intégration et l'optimisation, les diagnostics de convergence, les chaînes de Markov, les algorithmes adaptatifs, les algorithmes de Metropolis- Hastings et de Gibbs. Tous les chapitres incluent des exercices. Les programmes R sont disponibles dans un package spécifique. Le livre s'adresse à toute personne que la simulation statistique intéresse et n'exige aucune connaissance préalable du langage R, ni aucune expertise en statistique bayésienne, bien que nombre d'exercices relèvent de ce champ précis. Cet ouvrage sera utile aux étudiants et aux professionnels actifs dans les domaines de la statistique, des télécommunications, de l'économétrie, de la finance et bien d’autres encore.
Subjects / Keywords
Simulation; Méthodes de Monte Carlo; Metropolis-Hastings & Gibbs; Logiciel R; Génération de variables aléatoires

Related items

Showing items related by title and author.

  • Thumbnail
    Introducing Monte Carlo Methods with R 
    Robert, Christian P.; Casella, George (2009) Ouvrage
  • Thumbnail
    Monte Carlo Statistical Methods 
    Casella, George; Robert, Christian P. (2004) Ouvrage
  • Thumbnail
    A Short History of Markov Chain Monte Carlo: Subjective Recollections from Incomplete Data 
    Casella, George; Robert, Christian P. (2011) Article accepté pour publication ou publié
  • Thumbnail
    Discussions on "Riemann manifold Langevin and Hamiltonian Monte Carlo methods" 
    Barthelme, Simon; Beffy, Magali; Chopin, Nicolas; Doucet, Arnaud; Jacob, Pierre E.; Johansen, Adam M.; Marin, Jean-Michel; Robert, Christian P. (2011) Document de travail / Working paper
  • Thumbnail
    Monte Carlo Methods in Statistics 
    Robert, Christian P. (2011) Chapitre d'ouvrage
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo