
Lognormal star-scale invariant random measures
Allez, Romain; Rhodes, Rémi; Vargas, Vincent (2013), Lognormal star-scale invariant random measures, Probability Theory and Related Fields, 155, 3-4, p. 751-788. http://dx.doi.org/10.1007/s00440-012-0412-9
View/ Open
Type
Article accepté pour publication ou publiéDate
2013Journal name
Probability Theory and Related FieldsVolume
155Number
3-4Publisher
Springer
Pages
751-788
Publication identifier
Metadata
Show full item recordAbstract (EN)
In this article, we consider the continuous analog of the celebrated Mandelbrot star equation with lognormal weights. We show existence and uniqueness of measures satisfying the aforementioned continuous equation; these measures fall under the scope of the Gaussian multplicative chaos theory developped by J.P. Kahane in 1985 (or possibly extensions of this theory). As a by product, we also obtain an explicit characterization of the covariance structure of these measures. We also prove that qualitative properties such as long-range independence or isotropy can be read off the equation.Subjects / Keywords
Scale invariance; Random measure; Multiplicative chaos; Star equation; UniquenessRelated items
Showing items related by title and author.
-
Sohier, Julien; Vargas, Vincent; Rhodes, Rémi (2014) Article accepté pour publication ou publié
-
Allez, Romain; Rhodes, Rémi; Vargas, Vincent (2011) Document de travail / Working paper
-
Allez, Romain; Rhodes, Rémi; Vargas, Vincent (2015) Article accepté pour publication ou publié
-
Rhodes, Rémi; Vargas, Vincent (2010) Article accepté pour publication ou publié
-
Rhodes, Rémi; Vargas, Vincent (2011) Article accepté pour publication ou publié