• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail - No thumbnail

The Dalang Morton Willinger Theorem under cone constraints

Napp, Clotilde (2003), The Dalang Morton Willinger Theorem under cone constraints, Journal of Mathematical Economics, 39, 1/2, p. 111-126

Type
Article accepté pour publication ou publié
Lien vers un document non conservé dans cette base
http://halshs.archives-ouvertes.fr/halshs-00151469/en/
Date
2003
Nom de la revue
Journal of Mathematical Economics
Volume
39
Numéro
1/2
Pages
111-126
Métadonnées
Afficher la notice complète
Auteur(s)
Napp, Clotilde cc
Résumé (EN)
The Dalang–Morton–Willinger theorem [Stochastics Stochastic Rep. 29 (1990) 185] asserts, for a discrete-time perfect market model, that there is no arbitrage if and only if the discounted price process is a martingale with respect to an equivalent probability measure. The financial market is supposed to be perfect in the sense that there is no transaction cost, no imperfection on the numéraire, no short sale constraint, no constraint on the amounts invested, etc.In this note, we explore the same issue in the presence of such imperfections, more precisely, in the presence of polyhedral convex cone constraints. We first obtain a generalization of the Dalang–Morton–Willinger theorem [Stochastics Stochastic Rep. 29 (1990) 185]: we prove that under polyhedral convex cone constraints, absence of arbitrage is equivalent to the existence of a discount process such that, taking this process as a deflator, the net present value of any available investment opportunity is nonpositive.We then apply this general result to specific market imperfections fitting in the convex cone framework, like short sale constraints, solvability constraints, constraints on the quantities, amounts or proportions invested. We improve a result of Pham–Touzi [J. Math. Econ. 31 (2) (1999) 265]. We show that our model enables to deal with financial markets with possible imperfections on the numéraire (like different borrowing and lending rates, or more general convex cone constraints involving the numéraire).
Mots-clés
Cone constraints; Dalang–Morton–Willinger theorem; Arbitrage; Short sale constraints

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    Unbiased Disagreement and the Efficient Market Hypothesis 
    Jouini, Elyès; Napp, Clotilde (2009) Communication / Conférence
  • Vignette de prévisualisation
    Properties of the Social Discount Rate in a Benthamite Framework with Heterogeneous Degrees of Impatience 
    Jouini, Elyès; Napp, Clotilde; Nocetti, Diego (2008) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Girls' comparative advantage in reading can largely explain the gender gap in math-intensive fields 
    Napp, Clotilde; Thomas, Breda (2019) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Unbiased Disagreement in financial markets, waves of pessimism and the risk return tradeoff 
    Napp, Clotilde; Jouini, Elyès (2011) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    A Class of Models satisfying a Dynamical Version of the CAPM 
    Napp, Clotilde; Jouini, Elyès (2003) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo