Show simple item record

dc.contributor.authorJouini, Elyès
HAL ID: 6654
dc.date.accessioned2011-01-31T15:54:03Z
dc.date.available2011-01-31T15:54:03Z
dc.date.issued2000-07
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/5602
dc.language.isoenen
dc.subjectCompactness resultsen
dc.subjectConvergenceen
dc.subjectGeneralized Lipschitz functionsen
dc.subject.ddc519en
dc.subject.classificationjelC02en
dc.titleGeneralized Lipschitz functionsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenThe aim of this paper is to establish a compactness result on some function sets. The main idea is very simple : it suffices to change the axis in order to transform a family of nondecreasing functions in Lipschitz ones and then to apply Ascoli's theorem. As we will see, this simple geometrical approach can be extended to a wider class of functions. The paper is organized as follows. In the next section we shall define the concept of Q-Lipschitz functions, where Q is a convex cone and we shall construct a particular topology on this set. In Section 2, we shall establish our compactness result and we shall explore some properties of the considered topology. In Section 3, we shall extend the previous result to a more general class of functions and in Section 4 we shall present some applications of our result.en
dc.relation.isversionofjnlnameNonlinear Analysis: Theory, Methods & Applications
dc.relation.isversionofjnlvol41en
dc.relation.isversionofjnlissue3-4en
dc.relation.isversionofjnldate2000-07
dc.relation.isversionofjnlpages371-382en
dc.relation.isversionofdoihttp://dx.doi.org/10.1016/S0362-546X(98)00282-Xen
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherElsevieren
dc.subject.ddclabelProbabilités et mathématiques appliquéesen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record