• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Convex Sobolev inequalities and spectral gap

Bartier, Jean-Philippe; Dolbeault, Jean (2006), Convex Sobolev inequalities and spectral gap, Comptes rendus mathématique, 342, 5, p. 307-312. http://dx.doi.org/10.1016/j.crma.2005.12.004

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00004418/en/
Date
2006
Journal name
Comptes rendus mathématique
Volume
342
Number
5
Publisher
Académie des Sciences / Elsevier Masson SAS
Pages
307-312
Publication identifier
http://dx.doi.org/10.1016/j.crma.2005.12.004
Metadata
Show full item record
Author(s)
Bartier, Jean-Philippe
Dolbeault, Jean cc
Abstract (EN)
This note is devoted to the proof of convex Sobolev (or generalized Poincaré) inequalities which interpolate between spectral gap (or Poincaré) inequalities and logarithmic Sobolev inequalities. We extend to the whole family of convex Sobolev inequalities results which have recently been obtained by Cattiaux and Carlen and Loss for logarithmic Sobolev inequalities. Under local conditions on the density of the measure with respect to a reference measure, we prove that spectral gap inequalities imply all convex Sobolev inequalities with constants which are uniformly bounded in the limit approaching the logarithmic Sobolev inequalities. We recover the case of the logarithmic Sobolev inequalities as a special case.
Subjects / Keywords
perturbation; interpolation; entropy production method; logarithmic Sobolev inequalities; spectral gap inequalities; Poincaré inequalities; convex Sobolev inequalities; generalized Poincaré inequalities

Related items

Showing items related by title and author.

  • Thumbnail
    Interpolation between logarithmic Sobolev and Poincaré inequalities 
    Dolbeault, Jean; Bartier, Jean-Philippe; Arnold, Anton (2007) Article accepté pour publication ou publié
  • Thumbnail
    A functional framework for the Keller-Segel system: logarithmic Hardy-Littlewood-Sobolev and related spectral gap inequalities 
    Campos Serrano, Juan; Dolbeault, Jean (2012) Article accepté pour publication ou publié
  • Thumbnail
    A qualitative study of linear drift-diffusion equations with time-dependent or degenerate coefficients 
    Kowalczyk, Michal; Illner, Reinhard; Dolbeault, Jean; Bartier, Jean-Philippe (2007) Article accepté pour publication ou publié
  • Thumbnail
    Improved intermediate asymptotics for the heat equation 
    Bartier, Jean-Philippe; Blanchet, Adrien; Dolbeault, Jean; Escobedo, Miguel (2011) Article accepté pour publication ou publié
  • Thumbnail
    Gradient estimates for a degenerate parabolic equation with gradient absorption and applications 
    Bartier, Jean-Philippe; Laurençot, Philippe (2007) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo