• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

The Monge problem for supercritical Mane potentials on compact manifolds

Bernard, Patrick; Buffoni, Boris (2006), The Monge problem for supercritical Mane potentials on compact manifolds, Advances in Mathematics, 207, 2, p. 691-706. http://dx.doi.org/10.1016/j.aim.2006.01.003

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00004172/en/
Date
2006
Journal name
Advances in Mathematics
Volume
207
Number
2
Publisher
Elsevier
Pages
691-706
Publication identifier
http://dx.doi.org/10.1016/j.aim.2006.01.003
Metadata
Show full item record
Author(s)
Bernard, Patrick cc
Buffoni, Boris
Abstract (FR)
On montre l'existence d'une application de transport optimale pour le problème de Monge lorsque le cout est une distance Finslerienne sur une variété compacte. Le nouveau point de vue consiste à considérer la distance comme un potentiel de Mañé, et à exploiter des développements récents sur les solutions de viscostité de l'équation de Hamilton–Jacobi.
Abstract (EN)
We prove the existence of an optimal map for the Monge problem when the cost is a supercritical Mane potential on a compact manifold. Supercritical Mane potentials form a class of costs which generalize the Riemannian distances. We describe new links between this transportation problem and viscosity subsolutions of the Hamilton-Jacobi equation.
Subjects / Keywords
Monge problem; Transport maps; Kantorovitch potential; Viscosity solutions; Hamilton-Jacobi equation.

Related items

Showing items related by title and author.

  • Thumbnail
    Weak KAM pairs and Monge-Kantorovich duality 
    Bernard, Patrick; Buffoni, Boris (2007) Communication / Conférence
  • Thumbnail
    Existence of C1,1 critical sub-solutions of the Hamilton-Jacobi equation on compact manifolds 
    Bernard, Patrick (2007) Article accepté pour publication ou publié
  • Thumbnail
    Optimal mass transportation and Mather theory 
    Bernard, Patrick; Buffoni, Boris (2007) Article accepté pour publication ou publié
  • Thumbnail
    Bumpy metric theorem in the sense of Mané for non-convex Hamiltonians 
    Aslani, Shahriar; Bernard, Patrick (2022) Document de travail / Working paper
  • Thumbnail
    Minimisation methods for quasi-linear problems, with an application to periodic water waves 
    Buffoni, Boris; Séré, Eric; Toland, John (2005) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo