• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Sparse Modeling of Textures

Peyré, Gabriel (2009), Sparse Modeling of Textures, Journal of Mathematical Imaging and Vision, 34, 1, p. 17-31. http://dx.doi.org/10.1007/s10851-008-0120-3

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00359747/en/
Date
2009
Journal name
Journal of Mathematical Imaging and Vision
Volume
34
Number
1
Publisher
Springer
Pages
17-31
Publication identifier
http://dx.doi.org/10.1007/s10851-008-0120-3
Metadata
Show full item record
Author(s)
Peyré, Gabriel
Abstract (EN)
This paper presents a generative model for textures that uses a local sparse description of the image content. This model enforces the sparsity of the expansion of local texture patches on adapted atomic elements. The analysis of a given texture within this framework performs the sparse coding of all the patches of the texture into the dictionary of atoms. Conversely, the synthesis of a new texture is performed by solving an optimization problem that seeks for a texture whose patches are sparse in the dictionary. This paper explores several strategies to choose this dictionary. A set of hand crafted dictionaries composed of edges, oscillations, lines or crossings elements allows to synthesize synthetic images with geometric features. Another option is to define the dictionary as the set of all the patches of an input exemplar. This leads to computer graphics methods for synthesis and shares some similarities with non-local means filtering. The last method we explore learns the dictionary by an optimization process that maximizes the sparsity of a set of exemplar patches. Applications of all these methods to texture synthesis, inpainting and classification shows the efficiency of the proposed texture model.
Subjects / Keywords
Inpainting; Learning dictionaries; Sparse representation; Texture synthesis; Image processing

Related items

Showing items related by title and author.

  • Thumbnail
    Non-negative Sparse Modeling of Textures 
    Peyré, Gabriel (2007) Communication / Conférence
  • Thumbnail
    Bayesian Modeling of Motion Perception using Dynamical Stochastic Textures 
    Vacher, Jonathan; Meso, Andrew; Perrinet, Laurent U.; Peyré, Gabriel (2018) Article accepté pour publication ou publié
  • Thumbnail
    Constrained Sparse Texture Synthesis 
    Tartavel, Guillaume; Gousseau, Yann; Peyré, Gabriel (2013) Communication / Conférence
  • Thumbnail
    Locally Parallel Textures Modeling with Adapted Hilbert Spaces 
    Maurel, Pierre; Aujol, Jean-François; Peyré, Gabriel (2009) Communication / Conférence
  • Thumbnail
    Locally Parallel Texture Modeling 
    Maurel, Pierre; Aujol, Jean-François; Peyré, Gabriel (2011) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo