Show simple item record

dc.contributor.authorLandim, Claudio
HAL ID: 18198
dc.contributor.authorJara, Milton
dc.date.accessioned2009-06-30T08:44:23Z
dc.date.available2009-06-30T08:44:23Z
dc.date.issued2008
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/538
dc.language.isoenen
dc.subjectMathematics/mathematical physicsen
dc.subjectPhysics/Mathematicals physicsen
dc.subjectMathematics/Probabilityen
dc.subject.ddc519en
dc.titleQuenched nonequilibrium central limit theorem for a tagged particle in the exclusion process with bond disorderen
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherUniversité de Rouen;
dc.description.abstractenFor a sequence of i.i.d. random variables $\{\xi_x : x\in \bb Z\}$ bounded above and below by strictly positive finite constants, consider the nearest-neighbor one-dimensional simple exclusion process in which a particle at $x$ (resp. $x+1$) jumps to $x+1$ (resp. $x$) at rate $\xi_x$. We examine a quenched nonequilibrium central limit theorem for the position of a tagged particle in the exclusion process with bond disorder $\{\xi_x : x\in \bb Z\}$. We prove that the position of the tagged particle converges under diffusive scaling to a Gaussian process if the other particles are initially distributed according to a Bernoulli product measure associated to a smooth profile $\rho_0:\bb R\to [0,1]$.en
dc.relation.isversionofjnlnameAnnales de l'I.H.P. Probabilités et Statistiques
dc.relation.isversionofjnlvol44
dc.relation.isversionofjnlissue2en
dc.relation.isversionofjnldate2008
dc.relation.isversionofjnlpages341-361en
dc.relation.isversionofdoihttp://dx.doi.org/10.1214/07-AIHP112
dc.description.sponsorshipprivateouien
dc.subject.ddclabelProbabilités et mathématiques appliquéesen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record