• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Max Flow and Min Cut with bounded-length paths: complexity, algorithms, and approximation

Mahjoub, Ali Ridha; McCormick, S. Thomas (2010), Max Flow and Min Cut with bounded-length paths: complexity, algorithms, and approximation, Mathematical Programming, 124, 1-2, p. 271-284. http://dx.doi.org/10.1007/s10107-010-0366-6

Type
Article accepté pour publication ou publié
Date
2010
Journal name
Mathematical Programming
Volume
124
Number
1-2
Publisher
Springer
Pages
271-284
Publication identifier
http://dx.doi.org/10.1007/s10107-010-0366-6
Metadata
Show full item record
Author(s)
Mahjoub, Ali Ridha

McCormick, S. Thomas
Abstract (EN)
We consider the “flow on paths” versions of Max Flow and Min Cut when we restrict to paths having at most B arcs, and for versions where we allow fractional solutions or require integral solutions. We show that the continuous versions are polynomial even if B is part of the input, but that the integral versions are polynomial only when B ≤ 3. However, when B ≤ 3 we show how to solve the problems using ordinary Max Flow/Min Cut. We also give tight bounds on the integrality gaps between the integral and continuous objective values for both problems, and between the continuous objective values for the bounded-length paths version and the version allowing all paths. We give a primal–dual approximation algorithm for both problems whose approximation ratio attains the integrality gap, thereby showing that it is the best possible primal–dual approximation algorithm.
Subjects / Keywords
Min Cut; Max Flow; approximation algorithms

Related items

Showing items related by title and author.

  • Thumbnail
    Two-edge connected subgraph with bounded rings problem: Polyhedral results and Branch-and-Cut 
    Pesneau, Pierre; Mahjoub, Ali Ridha; McCormick, S. Thomas; Fortz, bernard (2006) Article accepté pour publication ou publié
  • Thumbnail
    A Strongly Polynomial Time Algorithm for Multicriteria Global Minimum Cuts 
    Aissi, Hassene; Mahjoub, Ali Ridha; McCormick, S. Thomas; Queyranne, Maurice (2014) Communication / Conférence
  • Thumbnail
    Separation Algorithms for Single-Machine Scheduling with Precedence Constraints 
    Mahjoub, Ali Ridha; McCormick, S. Thomas (2010) Communication / Conférence
  • Thumbnail
    Faster Algorithms for Next Breakpoint and Max Value for Parametric Global Minimum Cuts 
    Aissi, Hassene; McCormick, S. Thomas; Queyranne, Maurice (2020) Communication / Conférence
  • Thumbnail
    A branch-and-cut algorithm for the Multiple Steiner TSP with Order constraints 
    Borne, Sylvie; Mahjoub, Ali Ridha; Taktak, Raouia (2013) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo