• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Clique-connecting forest and stable set polytopes

Thumbnail
Date
2010
Dewey
Principes généraux des mathématiques
Sujet
facet; separation; polytope; Graph
Journal issue
RAIRO
Volume
44
Number
1
Publication date
01-2010
Article pages
73-83
Publisher
Edition Diffusion Presse Sciences
DOI
http://dx.doi.org/10.1051/ro/2010005
URI
https://basepub.dauphine.fr/handle/123456789/5026
Collections
  • LAMSADE : Publications
Metadata
Show full item record
Author
Cornaz, Denis
Type
Article accepté pour publication ou publié
Abstract (EN)
Let G=(V,E) be a simple undirected graph. A forest of G is said to be clique-connecting if each tree of F spans a clique of G. This paper adresses the clique-connecting forest polytope. First we give a formulation and a polynomial time separation algorithm. Then we show that the nontrivial nondegenerate facets of the stable set polytope are facets of the clique-connecting polytope. Finally we introduce a family of rank inequalities which are facets, and which generalize the clique inequalities.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.