• français
    • English
  • français 
    • français
    • English
  • Connexion
JavaScript is disabled for your browser. Some features of this site may not work without it.
Accueil

Afficher

Cette collectionPar Date de CréationAuteursTitresSujetsNoms de revueToute la baseCentres de recherche & CollectionsPar Date de CréationAuteursTitresSujetsNoms de revue

Mon compte

Connexion

Statistiques

Afficher les statistiques d'usage

Bayesian hidden Markov Model for DNA segmentation : A prior sensitivity analysis

Thumbnail
Date
2009
Lien vers un document non conservé dans cette base
http://hal.archives-ouvertes.fr/hal-00328181/en/
Indexation documentaire
Probabilités et mathématiques appliquées
Subject
DNA sequence; hidden Markov model; Bayesian model; sensitivity analysis; α-fetoprotein; Markov chain Monte Carlo; importance sampling.
Nom de la revue
Computational Statistics and Data Analysis
Volume
53
Numéro
5
Date de publication
03-2009
Pages article
1873-1882
DOI
http://dx.doi.org/10.1016/j.csda.2008.07.007
URI
https://basepub.dauphine.fr/handle/123456789/501
Collections
  • CEREMADE : Publications
Métadonnées
Afficher la notice complète
Auteur
Nur, Darfiana
Allingham, David
Rousseau, Judith
Mengersen, Kerrie
McVinish, Ross
Type
Article accepté pour publication ou publié
Résumé en anglais
The focus of this paper is on the sensitivity to the specification of the prior in a hidden Markov model describing homogeneous segments of DNA sequences. An intron from the chimpanzee α-fetoprotein gene, which plays an im- portant role in embryonic development in mammals is analysed. Three main aims are considered : (i) to assess the sensitivity to prior specification in Bayesian hidden Markov models for DNA sequence segmentation; (ii) to examine the impact of replacing the standard Dirichlet prior with a mixture Dirichlet prior; and (iii) to propose and illus- trate a more comprehensive approach to sensitivity analysis, using importance sampling. It is obtained that (i) the posterior estimates obtained under a Bayesian hidden Markov model are indeed sensitive to the specification of the prior distributions; (ii) compared with the standard Dirichlet prior, the mixture Dirichlet prior is more flexible, less sensitive to the choice of hyperparameters and less constraining in the analysis, thus improving posterior estimates; and (iii) importance sampling was computationally feasible, fast and effective in allowing a richer sensitivity analysis.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Cette création est mise à disposition sous un contrat Creative Commons.