A Liouville theorem for vector valued semilinear heat equations with no gradient structure and applications to blow-up
Zaag, Hatem; Nouaili, Nejla (2010), A Liouville theorem for vector valued semilinear heat equations with no gradient structure and applications to blow-up, Transactions of the American Mathematical Society, 362, 7, p. 3391-3434
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00531306/fr/Date
2010Journal name
Transactions of the American Mathematical SocietyVolume
362Number
7Publisher
American Mathematical Society
Pages
3391-3434
Metadata
Show full item recordAbstract (EN)
We prove a Liouville Theorem for a vector valued semilinear heat equation with no gradient structure. Classical tools such as the maximum principle or energy techniques break down and have to be replaced by a new approach. We then derive from this theorem uniform estimates for blow-up solutions of that equation.Subjects / Keywords
Vector-valued; Heat equation; Uniform estimates; Liouville theorem; Blow-upRelated items
Showing items related by title and author.
-
Nouaili, Nejla; Zaag, Hatem (2015) Article accepté pour publication ou publié
-
Nouaili, Nejla; Zaag, Hatem (2015) Article accepté pour publication ou publié
-
Nouaili, Nejla; Zaag, Hatem (2018) Article accepté pour publication ou publié
-
Construction of a blow-up solution for the Complex Ginzburg-Landau equation in a critical case, β≠0 Duong, Giao Ky; Nouaili, Nejla; Zaag, Hatem (2022) Document de travail / Working paper
-
Duong, Giao Ky; Nouaili, Nejla; Zaag, Hatem (2022) Article accepté pour publication ou publié