• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations

Mischler, Stéphane; Cañizo, José Alfredo; Caceres, Maria J. (2011), Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations, Journal de Mathématiques Pures et Appliquées, 96, 4, p. 334-362. http://dx.doi.org/10.1016/j.matpur.2011.01.003

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00530425/fr/
Date
2011
Journal name
Journal de Mathématiques Pures et Appliquées
Volume
96
Number
4
Publisher
Elsevier
Pages
334-362
Publication identifier
http://dx.doi.org/10.1016/j.matpur.2011.01.003
Metadata
Show full item record
Author(s)
Mischler, Stéphane
Cañizo, José Alfredo
Caceres, Maria J.
Abstract (EN)
We study the asymptotic behavior of linear evolution equations of the type $\partial_t g = Dg + \LL g - \lambda g$, where $\LL$ is the fragmentation operator, $D$ is a differential operator, and $\lambda$ is the largest eigenvalue of the operator $Dg + \LL g$. In the case $Dg = -\partial_x g$, this equation is a rescaling of the growth-fragmentation equation, a model for cellular growth; in the case $Dg = - x \partial_x g$, it is known that $\lambda = 2$ and the equation is the self-similar fragmentation equation, closely related to the self-similar behavior of solutions of the fragmentation equation $\partial_t f = \LL f$. By means of entropy-entropy dissipation inequalities, we give general conditions for $g$ to converge exponentially fast to the steady state $G$ of the linear evolution equation, suitably normalized. In both cases mentioned above we show these conditions are met for a wide range of fragmentation coefficients, so the exponential convergence holds.
Subjects / Keywords
self-similar fragmentation equations; partial differential equations; growth-fragmentation equations; symptotic profile; Entropy; Exponential convergence; Self-similarity; Long-time behavior

Related items

Showing items related by title and author.

  • Thumbnail
    Rate of convergence to self-similarity for the fragmentation equation in L1 spaces 
    Caceres, Maria J.; Cañizo, José Alfredo; Mischler, Stéphane (2010) Communication / Conférence
  • Thumbnail
    Regularity, local behavior and partial uniqueness for self-similar profiles of Smoluchowski's coagulation equation 
    Mischler, Stéphane; Cañizo, José Alfredo (2011) Article accepté pour publication ou publié
  • Thumbnail
    Rate of convergence to self-similarity for Smoluchowski's coagulation equation with constant coefficients 
    Cañizo, José Alfredo; Mischler, Stéphane; Mouhot, Clément (2010) Article accepté pour publication ou publié
  • Thumbnail
    Asymptotic behavior of solutions to the fragmentation equation with shattering: an approach via self-similar Markov processes 
    Haas, Bénédicte (2010) Article accepté pour publication ou publié
  • Thumbnail
    Convergence to Equilibrium for the Discrete Coagulation-Fragmentation Equations with Detailed Balance 
    Cañizo, José Alfredo (2007) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo