• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Smooth type II blow up solutions to the four dimensional energy critical wave equation

Raphaël, Pierre; Hillairet, Matthieu (2010), Smooth type II blow up solutions to the four dimensional energy critical wave equation, Analysis & PDE, 5, 4, p. 777-829. http://dx.doi.org/10.2140/apde.2012.5.777

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00524838/fr/
Date
2010-10
Journal name
Analysis & PDE
Volume
5
Number
4
Publisher
Mathematical Sciences Publisher
Pages
777-829
Publication identifier
http://dx.doi.org/10.2140/apde.2012.5.777
Metadata
Show full item record
Author(s)
Raphaël, Pierre
Hillairet, Matthieu
Abstract (EN)
We exhibit $\mathcal C^{\infty}$ type II blow up solutions to the focusing energy critical wave equation in dimension $N=4$. These solutions admit near blow up time a decomposiiton $$u(t,x)=\frac{1}{\lambda^{\frac{N-2}{2}}(t)}(Q+\e(t))(\frac{x}{\lambda(t)}) \ \ \mbox{with} \ \ \|\e(t),\pa_t\e(t)\|_{\dot{H}^1\times L^2}\ll1 $$ where $Q$ is the extremizing profile of the Sobolev embedding $\dot{H}^1\to L^{2^*}$, and a blow up speed $$\lambda(t)=(T-t)e^{-\sqrt{|\log (T-t)|}(1+o(1))} \ \ \mbox{as} \ \ t\to T.$$
Subjects / Keywords
Sobolev embedding; energy critical wave equation; Equations aux dérivées partielles

Related items

Showing items related by title and author.

  • Thumbnail
    Construction of a blow-up solution for the Complex Ginzburg-Landau equation in a critical case, β≠0 
    Duong, Giao Ky; Nouaili, Nejla; Zaag, Hatem (2020) Document de travail / Working paper
  • Thumbnail
    Construction of a blow-up solution for the Complex Ginzburg-Landau equation in some critical case 
    Nouaili, Nejla; Zaag, Hatem (2018) Article accepté pour publication ou publié
  • Thumbnail
    Existence of weak solutions up to collision for viscous fluid-solid systems with slip 
    Hillairet, Matthieu; Gérard-Varet, David (2014) Article accepté pour publication ou publié
  • Thumbnail
    Smooth critical sub-solutions of the Hamilton-Jacobi equation 
    Bernard, Patrick (2007) Article accepté pour publication ou publié
  • Thumbnail
    On the existence of solutions to the planar exterior Navier Stokes system 
    Wittwer, Peter; Hillairet, Matthieu (2013) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo