
Minimum cost spanning tree games and population monotonic allocation schemes
Norde, Henk; Moretti, Stefano; Tijs, Stef (2004), Minimum cost spanning tree games and population monotonic allocation schemes, European Journal of Operational Research, 154, 1, p. 84-97. http://dx.doi.org/10.1016/S0377-2217(02)00714-2
Voir/Ouvrir
Type
Article accepté pour publication ou publiéDate
2004Nom de la revue
European Journal of Operational ResearchVolume
154Numéro
1Éditeur
Elsevier
Pages
84-97
Identifiant publication
Métadonnées
Afficher la notice complèteRésumé (EN)
In this paper we present the Subtraction Algorithm that computes for every classical minimum cost spanning tree game a population monotonic allocation scheme. As a basis for this algorithm serves a decomposition theorem that shows that every minimum cost spanning tree game can be written as nonnegative combination of minimum cost spanning tree games corresponding to 0–1 cost functions. It turns out that the Subtraction Algorithm is closely related to the famous algorithm of Kruskal for the determination of minimum cost spanning trees. For variants of the classical minimum cost spanning tree games we show that population monotonic allocation schemes do not necessarily exist.Mots-clés
Minimum cost spanning tree games; Population monotonic allocation schemesPublications associées
Affichage des éléments liés par titre et auteur.
-
Tijs, Stef; Branzei, Rodica; Moretti, Stefano; Norde, Henk (2006) Article accepté pour publication ou publié
-
The Bird Core for Minimum Cost Spanning Tree Problems Revisited: Monotonicity and Additivity Aspects Norde, Henk; Branzei, Rodica; Moretti, Stefano; Tijs, Stef (2006) Chapitre d'ouvrage
-
Moretti, Stefano; Branzei, Rodica; Norde, Henk; Tijs, Stef (2005) Article accepté pour publication ou publié
-
Moretti, Stefano; Tijs, Stef; Branzei, Rodica; Norde, Henk (2009) Article accepté pour publication ou publié
-
Branzei, Rodica; Gök, Zeynep Alparslan; Moretti, Stefano; Tijs, Stef (2011) Article accepté pour publication ou publié